Machine learning prediction of prime editing efficiency across diverse chromatin contexts
Mathis, Nicolas; Allam, Ahmed; Tálas, András; Kissling, Lucas; Benvenuto, Elena; Schmidheini, Lukas; Schep, Ruben; Damodharan, Tanav; Balazs, Zsolt; Janjuha, Sharan; Ioannidi, Eleonora I; Böck, Desirée; van Steensel, Bas; Krauthammer, Michael; Schwank, Gerald (2025). Machine learning prediction of prime editing efficiency across diverse chromatin contexts. Nature Biotechnology, 43(5):712-719.
Additional indexing
Item Type: | Journal Article, refereed, original work |
---|---|
Communities & Collections: | 04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology 07 Faculty of Science > Department of Quantitative Biomedicine Special Collections > Centers of Competence > Competence Centre Language and Medicine Zurich |
Dewey Decimal Classification: | 610 Medicine & health |
Scopus Subject Areas: | Life Sciences > Biotechnology
Physical Sciences > Bioengineering Life Sciences > Applied Microbiology and Biotechnology Life Sciences > Molecular Medicine Physical Sciences > Biomedical Engineering |
Language: | English |
Date: | 1 May 2025 |
Deposited On: | 26 Nov 2024 13:15 |
Last Modified: | 30 May 2025 01:40 |
Publisher: | Nature Publishing Group |
ISSN: | 1087-0156 |
OA Status: | Closed |
Publisher DOI: | https://doi.org/10.1038/s41587-024-02268-2 |
PubMed ID: | 38907037 |
Project Information: |
|
Permanent URL
https://doi.org/10.5167/uzh-264436Download
Links
Statistics
Citations
Dimensions.ai Metrics