Header

UZH-Logo

Maintenance Infos

A click approach to structurally diverse conjugates containing a central di-1,2,3-triazole metal chelate


Mindt, T L; Schweinsberg, C; Brans, L; Hagenbach, A; Abram, U; Tourwé, D; Garcia-Garayoa, E; Schibli, R (2009). A click approach to structurally diverse conjugates containing a central di-1,2,3-triazole metal chelate. ChemMedChem, 4(4):529-539.

Abstract

The selective and efficient synthesis of novel tridentate metal chelating systems containing two 1,4-disubstituted 1,2,3-triazole heterocycles obtained via the copper(I)-catalyzed cycloaddition of alkynes and azides (click reaction) is described. The constructs are shown to be efficient ligand systems for the chelation of fac-[M(CO)(3)(H(2)O)(3)](+) (M=(99m)Tc, Re) yielding well- defined and stable complexes. The organometallic (99m)Tc conjugates are suitable for application as diagnostic radiotracers for single photon emission computed tomography (SPECT) as demonstrated in vivo with a fragment of the tumor-targeting bombesin peptide functionalized with a di-1,2,3-triazole chelator and radiolabeled with [(99m)Tc(CO)(3)](+). Starting from readily available dialkyne precursors, the central chelating systems are formed as the conjugates are assembled by click reaction with azide-functionalized entities. Depending on the nature of the azide substrates employed (e.g. lipophilic or hydrophilic residues) pharmacologically relevant characteristics of the final metal conjugate such as hydrophilicity or overall charge can be readily modulated. The procedures described also enable the facile introduction of other probes into the metal conjugate, providing access to potential multimodal imaging agents.

Abstract

The selective and efficient synthesis of novel tridentate metal chelating systems containing two 1,4-disubstituted 1,2,3-triazole heterocycles obtained via the copper(I)-catalyzed cycloaddition of alkynes and azides (click reaction) is described. The constructs are shown to be efficient ligand systems for the chelation of fac-[M(CO)(3)(H(2)O)(3)](+) (M=(99m)Tc, Re) yielding well- defined and stable complexes. The organometallic (99m)Tc conjugates are suitable for application as diagnostic radiotracers for single photon emission computed tomography (SPECT) as demonstrated in vivo with a fragment of the tumor-targeting bombesin peptide functionalized with a di-1,2,3-triazole chelator and radiolabeled with [(99m)Tc(CO)(3)](+). Starting from readily available dialkyne precursors, the central chelating systems are formed as the conjugates are assembled by click reaction with azide-functionalized entities. Depending on the nature of the azide substrates employed (e.g. lipophilic or hydrophilic residues) pharmacologically relevant characteristics of the final metal conjugate such as hydrophilicity or overall charge can be readily modulated. The procedures described also enable the facile introduction of other probes into the metal conjugate, providing access to potential multimodal imaging agents.

Statistics

Citations

Dimensions.ai Metrics
57 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Molecular Medicine
Life Sciences > Pharmacology
Life Sciences > Drug Discovery
Life Sciences > General Pharmacology, Toxicology and Pharmaceutics
Physical Sciences > Organic Chemistry
Language:English
Date:2009
Deposited On:11 Jan 2010 11:58
Last Modified:03 Nov 2023 03:16
Publisher:Wiley-Blackwell
ISSN:1860-7179
Additional Information:The definitive version is available at www.blackwell-synergy.com
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/cmdc.200800418
PubMed ID:19235821
Full text not available from this repository.