Header

UZH-Logo

Maintenance Infos

Advanced X-ray diffractive optics


Vila-Comamala, J; Jefimovs, K; Pilvi, T; Ritala, M; Sarkar, S S; Solak, H H; Guzenko, V A; Stampanoni, M; Marone, F; Raabe, J; Tzvetkov, G; Fink, R H; Grolimund, D; Borca, C N; Kaulich, B; David, C (2009). Advanced X-ray diffractive optics. Journal of Physics: Conference Series, 186:012078.

Abstract

X-ray microscopy greatly benefits from the advances in x-ray optics. At the Paul Scherrer Institut, developments in x-ray diffractive optics include the manufacture and optimization of Fresnel zone plates (FZPs) and diffractive optical elements for both soft and hard x-ray regimes. In particular, we demonstrate here a novel method for the production of ultra-high resolution FZPs. This technique is based on the deposition of a zone plate material (iridium) onto the sidewalls of a prepatterned template structure (silicon) by atomic layer deposition. This approach overcomes the limitations due to electron-beam writing of dense patterns in FZP fabrication and provides a clear route to push the resolution into sub-10 nm regime. A FZP fabricated by this method was used to resolve test structures with 12 nm lines and spaces at the scanning transmission x-ray microscope of the PolLux beamline of the Swiss Light Source at 1.2 keV photon energy.

Abstract

X-ray microscopy greatly benefits from the advances in x-ray optics. At the Paul Scherrer Institut, developments in x-ray diffractive optics include the manufacture and optimization of Fresnel zone plates (FZPs) and diffractive optical elements for both soft and hard x-ray regimes. In particular, we demonstrate here a novel method for the production of ultra-high resolution FZPs. This technique is based on the deposition of a zone plate material (iridium) onto the sidewalls of a prepatterned template structure (silicon) by atomic layer deposition. This approach overcomes the limitations due to electron-beam writing of dense patterns in FZP fabrication and provides a clear route to push the resolution into sub-10 nm regime. A FZP fabricated by this method was used to resolve test structures with 12 nm lines and spaces at the scanning transmission x-ray microscope of the PolLux beamline of the Swiss Light Source at 1.2 keV photon energy.

Statistics

Citations

Dimensions.ai Metrics
8 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

99 downloads since deposited on 17 Feb 2010
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Scopus Subject Areas:Physical Sciences > General Physics and Astronomy
Language:English
Date:2009
Deposited On:17 Feb 2010 09:15
Last Modified:14 Oct 2022 17:03
Publisher:Institute of Physics Publishing
ISSN:1742-6588
OA Status:Gold
Publisher DOI:https://doi.org/10.1088/1742-6596/186/1/012078
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)