Abstract
Background
Preoperative prediction of postoperative pulmonary function after anatomical resection for lung cancer is essential to prevent long-term morbidity and mortality. Here, we compared the accuracy of hybrid single-photon emission computed tomography/computed tomography (SPECT/CT) with traditional anatomical and planar scintigraphy approaches in predicting postoperative pulmonary function in patients with impaired lung function.
Methods
We analyzed the predicted postoperative pulmonary function in patients undergoing major anatomical lung resection, applying a segment counting approach, planar perfusion scintigraphy (PPS), and SPECT/CT-based lung function quantification.
Results
In total, 120 patients were evaluated, of whom 82 were included in the study. Postoperative lung function tests were obtained in 21 of 82 patients. The preoperative SPECT/CT-based quantification yielded very accurate results compared to the actual postoperative FEV1 and DLCO values. The linear regression analysis showed that the SPECT/CT-based analysis predicted postoperative FEV$_{1}$ (%) and D$_{LCO}$ values more accurately than the segment counting approach or PPS. Accordingly, 58/82 patients would qualify for anatomical lung resection according to the SPECT-based quantification, 56/82 qualified according to the PPS (Mende), and only 47/82 qualified according to the segment counting method. Moreover, we noted that the SPECT-predicted FEV$_{1}$ values were very close to the actual postoperative values in emphysema patients, and selected patients even showed improved lung function after surgery.
Conclusions
Anatomically driven methods such as SPECT/CT yielded a very accurate prediction of the postoperative pulmonary function. Accordingly, applying SPECT/CT revealed more patients who would formally qualify for lung resection. We suggest SPECT/CT as the preferred method to evaluate eligibility for lung surgery in selected patients with impaired pulmonary reserve.