Header

UZH-Logo

Maintenance Infos

Regulation of antibiotic resistance in Staphylococcus aureus


McCallum, N; Berger-Bächi, B; Senn, M M (2010). Regulation of antibiotic resistance in Staphylococcus aureus. International Journal of Medical Microbiology, 300(2-3):118-129.

Abstract

Staphylococcus aureus has a formidable ability to adapt to varying environmental conditions and an extraordinary capacity to rapidly become resistant to virtually all antibiotics. Resistance develops either through mutations and rearrangements within the staphylococcal genome, or by the acquisition of resistance determinants. Antibiotic resistances often impose a fitness burden on the host. Such biological costs can be reduced by tight regulation and antibiotic-inducible expression of resistance genes, or by compensatory mutations. Resistance induction by antibiotics can be mediated by dedicated, antibiotic-recognizing signal transducers or by mechanisms relieving translational attenuation. Antibiotic tolerance and the expression of resistance phenotypes can also be strongly influenced by the genetic backgrounds of strains and several other factors. Modification and indirect regulation of resistance levels can occur by mutations that alter gene expression or substrate specificity of genes contributing to resistance. Insertion elements can alter resistance profiles by turning relevant genes on or off. Environmental conditions and stress response mechanisms triggered by perturbation of the cell envelope, DNA damage, or faulty intermediary metabolism can also have an impact on resistance development and expression. Clinically relevant resistance is often built up through multiple steps, each of which contributes to an increase in resistance. The driving force behind resistance formation is antibiotic stress, and under clinical conditions selection for resistance is continuously competing with selection for bacterial fitness.

Abstract

Staphylococcus aureus has a formidable ability to adapt to varying environmental conditions and an extraordinary capacity to rapidly become resistant to virtually all antibiotics. Resistance develops either through mutations and rearrangements within the staphylococcal genome, or by the acquisition of resistance determinants. Antibiotic resistances often impose a fitness burden on the host. Such biological costs can be reduced by tight regulation and antibiotic-inducible expression of resistance genes, or by compensatory mutations. Resistance induction by antibiotics can be mediated by dedicated, antibiotic-recognizing signal transducers or by mechanisms relieving translational attenuation. Antibiotic tolerance and the expression of resistance phenotypes can also be strongly influenced by the genetic backgrounds of strains and several other factors. Modification and indirect regulation of resistance levels can occur by mutations that alter gene expression or substrate specificity of genes contributing to resistance. Insertion elements can alter resistance profiles by turning relevant genes on or off. Environmental conditions and stress response mechanisms triggered by perturbation of the cell envelope, DNA damage, or faulty intermediary metabolism can also have an impact on resistance development and expression. Clinically relevant resistance is often built up through multiple steps, each of which contributes to an increase in resistance. The driving force behind resistance formation is antibiotic stress, and under clinical conditions selection for resistance is continuously competing with selection for bacterial fitness.

Statistics

Citations

Dimensions.ai Metrics
57 citations in Web of Science®
69 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 22 Jan 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Health Sciences > Microbiology (medical)
Health Sciences > Infectious Diseases
Language:English
Date:February 2010
Deposited On:22 Jan 2010 16:05
Last Modified:27 Jun 2022 13:30
Publisher:Urban und Fischer
ISSN:1438-4221
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.ijmm.2009.08.015
PubMed ID:19800843