Header

UZH-Logo

Maintenance Infos

Transcription in the absence of histone H3.3


Hödl, M; Basler, K (2009). Transcription in the absence of histone H3.3. Current Biology, 19(14):1221-1226.

Abstract

Di- and trimethylation of histone H3 lysine 4 (H3K4me2 and H3K4me3) are hallmarks of chromatin at active genes. The major fraction of K4-methylated histone H3 is the variant H3 (termed H3.3 in Drosophila), which replaces canonical H3 (H3.2) in transcribed genes. Here, we genetically address the in vivo significance of such K4 methylation by replacing wild-type H3.3 with a mutant form (H3.3K4A) that cannot be methylated. We monitored the transcription that occurs in response to multiple well-described signaling pathways. Surprisingly, the transcriptional outputs of these pathways remain intact in H3.3K4A mutant cells. Even the complete absence of both H3.3 genes does not noticeably affect viability or function of cells: double mutant animals are viable but sterile. Fertility can be rescued by K4-containing versions of H3.3, but not with mutant H3.3 (H3.3K4A) or with canonical H3.2. Together, these data suggest that in Drosophila, presence of H3.3K4me in the chromatin of active genes is dispensable for successful transcription in most cells and only plays an important role in reproductive tissues.

Abstract

Di- and trimethylation of histone H3 lysine 4 (H3K4me2 and H3K4me3) are hallmarks of chromatin at active genes. The major fraction of K4-methylated histone H3 is the variant H3 (termed H3.3 in Drosophila), which replaces canonical H3 (H3.2) in transcribed genes. Here, we genetically address the in vivo significance of such K4 methylation by replacing wild-type H3.3 with a mutant form (H3.3K4A) that cannot be methylated. We monitored the transcription that occurs in response to multiple well-described signaling pathways. Surprisingly, the transcriptional outputs of these pathways remain intact in H3.3K4A mutant cells. Even the complete absence of both H3.3 genes does not noticeably affect viability or function of cells: double mutant animals are viable but sterile. Fertility can be rescued by K4-containing versions of H3.3, but not with mutant H3.3 (H3.3K4A) or with canonical H3.2. Together, these data suggest that in Drosophila, presence of H3.3K4me in the chromatin of active genes is dispensable for successful transcription in most cells and only plays an important role in reproductive tissues.

Statistics

Citations

Dimensions.ai Metrics
98 citations in Web of Science®
99 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

114 downloads since deposited on 28 Jan 2010
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Language:English
Date:2009
Deposited On:28 Jan 2010 15:18
Last Modified:27 Jun 2022 14:01
Publisher:Elsevier
ISSN:0960-9822
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1016/j.cub.2009.05.048
PubMed ID:19523831