Header

UZH-Logo

Maintenance Infos

Chronic exogenous corticosterone administration generates an insulin-resistant brain state in rats


Osmanovic, J; Plaschke, K; Salkovic-Petrisic, M; Grünblatt, Edna; Riederer, P; Hoyer, S (2010). Chronic exogenous corticosterone administration generates an insulin-resistant brain state in rats. Stress, 13(2):123-131.

Abstract

We investigated whether long-term administration of exogenous corticosterone (CST) or vehicle as daily treatment induces changes in rat behavior and in gene expression of the rat brain insulin signaling pathway and the formation of tau protein. Two groups of male adult rats received daily subcutaneous injections of 26.8 mg/kg CST (CST stress group) or vehicle-sesame oil (injection stress group) for 60 days while the third group was taken as untreated controls (n = 8 each). Body weight and plasma CST were measured and psychometric investigations were conducted using a rat holeboard test system before and after the treatment. Gene expression analyzes were performed by RT-PCR in cerebral cortical tissue for insulin genes 1 and 2, insulin receptor (IR), insulin degrading enzyme (IDE), and tau protein. Daily injections of CST for 60 days induced a significant, 2-fold increase in rat plasma CST concentrations in comparison to untreated controls. Significantly reduced behavioral abilities in CST-treated rats were associated with reduced gene expression of insulin 1 ( - 20%), IDE ( - 23%), and IR ( - 26%), indicating an insulin-resistant brain state, followed by increased tau protein (+28%) gene expression. In summary, chronic CST administration affects gene expression in the brain IR signaling cascade and increases tau gene expression, which is associated with reductions in cognition capacity in rats.

Abstract

We investigated whether long-term administration of exogenous corticosterone (CST) or vehicle as daily treatment induces changes in rat behavior and in gene expression of the rat brain insulin signaling pathway and the formation of tau protein. Two groups of male adult rats received daily subcutaneous injections of 26.8 mg/kg CST (CST stress group) or vehicle-sesame oil (injection stress group) for 60 days while the third group was taken as untreated controls (n = 8 each). Body weight and plasma CST were measured and psychometric investigations were conducted using a rat holeboard test system before and after the treatment. Gene expression analyzes were performed by RT-PCR in cerebral cortical tissue for insulin genes 1 and 2, insulin receptor (IR), insulin degrading enzyme (IDE), and tau protein. Daily injections of CST for 60 days induced a significant, 2-fold increase in rat plasma CST concentrations in comparison to untreated controls. Significantly reduced behavioral abilities in CST-treated rats were associated with reduced gene expression of insulin 1 ( - 20%), IDE ( - 23%), and IR ( - 26%), indicating an insulin-resistant brain state, followed by increased tau protein (+28%) gene expression. In summary, chronic CST administration affects gene expression in the brain IR signaling cascade and increases tau gene expression, which is associated with reductions in cognition capacity in rats.

Statistics

Citations

Dimensions.ai Metrics
18 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Department of Child and Adolescent Psychiatry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Physiology
Social Sciences & Humanities > Neuropsychology and Physiological Psychology
Life Sciences > Endocrine and Autonomic Systems
Health Sciences > Psychiatry and Mental Health
Life Sciences > Behavioral Neuroscience
Language:English
Date:23 November 2010
Deposited On:08 Feb 2010 10:56
Last Modified:04 Dec 2023 02:38
Publisher:Informa Healthcare
ISSN:1025-3890
OA Status:Closed
Publisher DOI:https://doi.org/10.3109/10253890903080379
PubMed ID:19929311
Full text not available from this repository.