Header

UZH-Logo

Maintenance Infos

Hyperantithrombotic, noncytoprotective Glu149Ala-activated protein C mutant


Mosnier, L O; Zampolli, A; Kerschen, E J; Schuepbach, R A; Banerjee, Y; Fernández, J A; Yang, X V; Riewald, M; Weiler, H; Ruggeri, Z M; Griffin, J H (2009). Hyperantithrombotic, noncytoprotective Glu149Ala-activated protein C mutant. Blood, 113(23):5970-5978.

Abstract

Activated protein C (APC) reduces mortality in severe sepsis patients. APC exerts anticoagulant activities via inactivation of factors Va and VIIIa and cytoprotective activities via endothelial protein C receptor and protease-activated receptor-1. APC mutants with selectively altered and opposite activity profiles, that is, greatly reduced anticoagulant activity or greatly reduced cytoprotective activities, are compared here. Glu149Ala-APC exhibited enhanced in vitro anticoagulant and in vivo antithrombotic activity, but greatly diminished in vitro cytoprotective effects and in vivo reduction of endotoxin-induced murine mortality. Thus, residue Glu149 and the C-terminal region of APC's light chain are identified as functionally important for expression of multiple APC activities. In contrast to Glu149Ala-APC, 5A-APC (Lys191-193Ala + Arg229/230Ala) with protease domain mutations lacked in vivo antithrombotic activity, although it was potent in reducing endotoxin-induced mortality, as previously shown. These data imply that APC molecular species with potent antithrombotic activity, but without robust cytoprotective activity, are not sufficient to reduce mortality in endotoxemia, emphasizing the need for APC's cytoprotective actions, but not anticoagulant actions, to reduce endotoxin-induced mortality. Protein engineering can provide APC mutants that permit definitive mechanism of action studies for APC's multiple activities, and may also provide safer and more effective second-generation APC mutants with reduced bleeding risk.

Abstract

Activated protein C (APC) reduces mortality in severe sepsis patients. APC exerts anticoagulant activities via inactivation of factors Va and VIIIa and cytoprotective activities via endothelial protein C receptor and protease-activated receptor-1. APC mutants with selectively altered and opposite activity profiles, that is, greatly reduced anticoagulant activity or greatly reduced cytoprotective activities, are compared here. Glu149Ala-APC exhibited enhanced in vitro anticoagulant and in vivo antithrombotic activity, but greatly diminished in vitro cytoprotective effects and in vivo reduction of endotoxin-induced murine mortality. Thus, residue Glu149 and the C-terminal region of APC's light chain are identified as functionally important for expression of multiple APC activities. In contrast to Glu149Ala-APC, 5A-APC (Lys191-193Ala + Arg229/230Ala) with protease domain mutations lacked in vivo antithrombotic activity, although it was potent in reducing endotoxin-induced mortality, as previously shown. These data imply that APC molecular species with potent antithrombotic activity, but without robust cytoprotective activity, are not sufficient to reduce mortality in endotoxemia, emphasizing the need for APC's cytoprotective actions, but not anticoagulant actions, to reduce endotoxin-induced mortality. Protein engineering can provide APC mutants that permit definitive mechanism of action studies for APC's multiple activities, and may also provide safer and more effective second-generation APC mutants with reduced bleeding risk.

Statistics

Citations

Dimensions.ai Metrics
60 citations in Web of Science®
64 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
04 Faculty of Medicine > University Hospital Zurich > Institute of Intensive Care Medicine
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Immunology
Health Sciences > Hematology
Life Sciences > Cell Biology
Language:English
Date:2009
Deposited On:12 Feb 2010 17:49
Last Modified:23 Jan 2022 16:00
Publisher:American Society of Hematology
ISSN:0006-4971
OA Status:Closed
Publisher DOI:https://doi.org/10.1182/blood-2008-10-183327
PubMed ID:19244160
Full text not available from this repository.