Header

UZH-Logo

Maintenance Infos

Effect of ultrasonic versus manual cementation on the fracture strength of resin composite laminates


Özcan, M; Mese, A (2009). Effect of ultrasonic versus manual cementation on the fracture strength of resin composite laminates. Operative Dentistry, 34(4):437-442.

Abstract

This study evaluated the effect of conventional versus ultrasonic cementation techniques on the fracture strength of resin composite laminates. In addition, the failure modes were assessed. Window-type preparations 1 mm above the cemento-enamel junction were made on intact human maxillary central incisors (N=60) of similar size with a depth cutting bur. All the prepared teeth were randomly assigned to six experimental groups (10/per group). Using a highly filled polymeric material (Estenia), laminates were produced and finished. The standard thickness of laminates in original tooth form was achieved using the impression molds made prior to tooth preparation. A three-step bonding procedure and dual polymerized resin composite cement (Panavia F 2.0) was employed. The cementation surfaces of the laminates were conditioned (CoJet-Sand, 30 microm SiO2) and silanized (ESPE-Sil). Laminates in Groups 1, 2, 3, 4 and 5 were cemented by five different operators under finger pressure and Group 6 was cemented ultrasonically (Amdent). After excess removal, the laminates were light polymerized. The specimens were stored in water at 37 degrees C for one month prior to the fracture test (universal testing machine, 1 mm/minute). Failure types were classified as: a) Cohesive failure within the composite laminate (Type A), b) Adhesive failure between the tooth and laminate (Type B) and c) Chipping of the laminate with enamel exposure (Type C). No significant difference was found among the mean fracture strength values of the laminates in all the experimental groups (ANOVA, p=0.251). The mean fracture strength values in descending order were: 513 +/- 197, 439 +/- 125, 423 +/- 163, 411 +/- 126, 390 +/- 94, 352 +/- 117 N for Groups 2, 5, 4, 3, 1 and 6, respectively. The majority of failure types was Type A (30/60). While Type B failure was not observed in Group 6 (0/10), Group 1 presented a more frequent incidence of this failure (6/10). The two cementation techniques did not effect the fracture strength of composite laminates, but failure types varied between groups, being more favorable for the ultrasonically cemented group.

Abstract

This study evaluated the effect of conventional versus ultrasonic cementation techniques on the fracture strength of resin composite laminates. In addition, the failure modes were assessed. Window-type preparations 1 mm above the cemento-enamel junction were made on intact human maxillary central incisors (N=60) of similar size with a depth cutting bur. All the prepared teeth were randomly assigned to six experimental groups (10/per group). Using a highly filled polymeric material (Estenia), laminates were produced and finished. The standard thickness of laminates in original tooth form was achieved using the impression molds made prior to tooth preparation. A three-step bonding procedure and dual polymerized resin composite cement (Panavia F 2.0) was employed. The cementation surfaces of the laminates were conditioned (CoJet-Sand, 30 microm SiO2) and silanized (ESPE-Sil). Laminates in Groups 1, 2, 3, 4 and 5 were cemented by five different operators under finger pressure and Group 6 was cemented ultrasonically (Amdent). After excess removal, the laminates were light polymerized. The specimens were stored in water at 37 degrees C for one month prior to the fracture test (universal testing machine, 1 mm/minute). Failure types were classified as: a) Cohesive failure within the composite laminate (Type A), b) Adhesive failure between the tooth and laminate (Type B) and c) Chipping of the laminate with enamel exposure (Type C). No significant difference was found among the mean fracture strength values of the laminates in all the experimental groups (ANOVA, p=0.251). The mean fracture strength values in descending order were: 513 +/- 197, 439 +/- 125, 423 +/- 163, 411 +/- 126, 390 +/- 94, 352 +/- 117 N for Groups 2, 5, 4, 3, 1 and 6, respectively. The majority of failure types was Type A (30/60). While Type B failure was not observed in Group 6 (0/10), Group 1 presented a more frequent incidence of this failure (6/10). The two cementation techniques did not effect the fracture strength of composite laminates, but failure types varied between groups, being more favorable for the ultrasonically cemented group.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 12 Feb 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Reconstructive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > General Dentistry
Language:English
Date:2009
Deposited On:12 Feb 2010 05:45
Last Modified:23 Mar 2023 09:24
Publisher:Academy of Operative Dentistry
ISSN:0361-7734
OA Status:Closed
Publisher DOI:https://doi.org/10.2341/08-112
Related URLs:http://www.jopdentonline.org (Publisher)
PubMed ID:19678449