Header

UZH-Logo

Maintenance Infos

A strong genetic footprint of the re-introduction history of Alpine ibex (Capra ibex ibex)


Biebach, I; Keller, L F (2009). A strong genetic footprint of the re-introduction history of Alpine ibex (Capra ibex ibex). Molecular Ecology, 18(24):5046-5058.

Abstract

A population’s neutral genetic variation is a composite of its size, degree of isolation and demographic history. Bottlenecks and founder events increase genetic drift, leading to the loss of genetic variation and increased genetic differentiation among populations. Gene flow has the opposite effects. Thus, gene flow can override the genetic patterns caused by founder events. Using 37 microsatellite loci, we investigated the effects of serial bottlenecks on genetic variation and differentiation among 42 Alpine ibex populations in Switzerland with known re-introduction histories. We detected a strong footprint of re-introduction events on contemporary genetic structure, with re-introduction history explaining a substantial part of the genetic differentiation among populations. As a result of the translocation of a considerable number of individuals from the sole formerly surviving population in northern Italy, most of the genetic variation of the ancestral population is now present in the combined re-introduced Swiss populations. However, re-introductions split up the genetic variation among populations, such that each contemporary Swiss population showed lower genetic variation than the ancestral population. As expected, serial bottlenecks had different effects on the expected heterozygosity (He) and standardized number of alleles (sNa). While loss of sNa was higher in the first bottlenecks than in subsequent ones, He declined to a similar degree with each bottleneck. Thus, genetic drift was detected with each bottleneck, even when no loss of sNa was observed. Overall, more than a hundred years after the beginning of this successful re-introduction programme, re-introduction history was the main determinant of today’s genetic structure.

Abstract

A population’s neutral genetic variation is a composite of its size, degree of isolation and demographic history. Bottlenecks and founder events increase genetic drift, leading to the loss of genetic variation and increased genetic differentiation among populations. Gene flow has the opposite effects. Thus, gene flow can override the genetic patterns caused by founder events. Using 37 microsatellite loci, we investigated the effects of serial bottlenecks on genetic variation and differentiation among 42 Alpine ibex populations in Switzerland with known re-introduction histories. We detected a strong footprint of re-introduction events on contemporary genetic structure, with re-introduction history explaining a substantial part of the genetic differentiation among populations. As a result of the translocation of a considerable number of individuals from the sole formerly surviving population in northern Italy, most of the genetic variation of the ancestral population is now present in the combined re-introduced Swiss populations. However, re-introductions split up the genetic variation among populations, such that each contemporary Swiss population showed lower genetic variation than the ancestral population. As expected, serial bottlenecks had different effects on the expected heterozygosity (He) and standardized number of alleles (sNa). While loss of sNa was higher in the first bottlenecks than in subsequent ones, He declined to a similar degree with each bottleneck. Thus, genetic drift was detected with each bottleneck, even when no loss of sNa was observed. Overall, more than a hundred years after the beginning of this successful re-introduction programme, re-introduction history was the main determinant of today’s genetic structure.

Statistics

Citations

Dimensions.ai Metrics
67 citations in Web of Science®
68 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 13 Feb 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Life Sciences > Genetics
Language:English
Date:2009
Deposited On:13 Feb 2010 10:58
Last Modified:28 Jun 2022 07:43
Publisher:Wiley-Blackwell
ISSN:0962-1083
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/j.1365-294X.2009.04420.x
PubMed ID:19912536