Abstract
We construct infinitely many distinct simply connected Stein fillings of a certain infinite family of contact 3-manifolds.
Akhmedov, A; Etnyre, J B; Mark, T E; Smith, I (2008). A note on Stein fillings of contact manifolds. Mathematical Research Letters, 15(6):1127-1132.
We construct infinitely many distinct simply connected Stein fillings of a certain infinite family of contact 3-manifolds.
We construct infinitely many distinct simply connected Stein fillings of a certain infinite family of contact 3-manifolds.
Item Type: | Journal Article, refereed, original work |
---|---|
Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |
Dewey Decimal Classification: | 510 Mathematics |
Scopus Subject Areas: | Physical Sciences > General Mathematics |
Language: | English |
Date: | 2008 |
Deposited On: | 13 Feb 2010 10:44 |
Last Modified: | 04 Dec 2023 02:39 |
Publisher: | International Press |
ISSN: | 1073-2780 |
OA Status: | Green |
Official URL: | http://www.mrlonline.org/mrl/2008-015-006/2008-015-006-005.html |
Related URLs: | http://arxiv.org/abs/0712.3932 |
TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.