Header

UZH-Logo

Maintenance Infos

Low metallicity and ultra-luminous X-ray sources in the Cartwheel galaxy


Mapelli, M; Colpi, M; Zampieri, L (2009). Low metallicity and ultra-luminous X-ray sources in the Cartwheel galaxy. Monthly Notices of the Royal Astronomical Society, 395(1):L71-L75.

Abstract

Observations of turbulent velocity dispersions in the H i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H i velocity dispersion profiles and the characteristic value of ∼10 km s−1 observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area ≳10−3 M⊙ yr−1 kpc−2 .

Abstract

Observations of turbulent velocity dispersions in the H i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H i velocity dispersion profiles and the characteristic value of ∼10 km s−1 observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area ≳10−3 M⊙ yr−1 kpc−2 .

Statistics

Citations

Dimensions.ai Metrics
107 citations in Web of Science®
117 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

88 downloads since deposited on 26 Feb 2010
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Uncontrolled Keywords:black hole physics, galaxies: individual: Cartwheel, galaxies: starburst, X-rays: binaries, X-rays: galaxies
Language:English
Date:May 2009
Deposited On:26 Feb 2010 12:58
Last Modified:28 Jun 2022 07:58
Publisher:Wiley-Blackwell
ISSN:0035-8711
Funders:Swiss National Science Foundation [200020-109581/1], INAF [PRIN-2007-26]
Additional Information:The attached file is a preprint (accepted version) of an article published in Monthly Notices of the Royal Astronomical Society. The definitive version is available at www3.interscience.wiley.com
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1111/j.1745-3933.2009.00645.x
Related URLs:http://arxiv.org/abs/0902.3540
Project Information:
  • : FunderSNSF
  • : Grant ID
  • : Project TitleSwiss National Science Foundation [200020-109581/1]
  • : Funder
  • : Grant ID
  • : Project TitleINAF [PRIN-2007-26]
  • Content: Accepted Version