Header

UZH-Logo

Maintenance Infos

Simulating fluid-phase equilibria of water from first principles


McGrath, M J; Siepmann, J I; Kuo, I F W; Mundy, C J; VandeVondele, J; Hutter, J; Mohamed, F; Krack, M (2006). Simulating fluid-phase equilibria of water from first principles. Journal of Physical Chemistry. A, 110(2):640-646.

Abstract

Efficient Monte Carlo algorithms and a mixed-basis set electronic structure program were used to compute from first principles the vapor-liquid coexistence curve of water. A water representation based on the Becke-Lee-Yang-Parr exchange and correlation functionals yields a saturated liquid density of 900kg/m(3) at 323 K and normal boiling and critical temperatures of 350 and 550 K, respectively. An analysis of the structural and electronic properties of the saturated liquid phase shows an increase of the asymmetry of the local hydrogen-bonded structure despite the persistence of a 4-fold coordination and decreases of the molecular dipole moment and of the spread of the lowest unoccupied molecular orbital with increasing temperature.

Abstract

Efficient Monte Carlo algorithms and a mixed-basis set electronic structure program were used to compute from first principles the vapor-liquid coexistence curve of water. A water representation based on the Becke-Lee-Yang-Parr exchange and correlation functionals yields a saturated liquid density of 900kg/m(3) at 323 K and normal boiling and critical temperatures of 350 and 550 K, respectively. An analysis of the structural and electronic properties of the saturated liquid phase shows an increase of the asymmetry of the local hydrogen-bonded structure despite the persistence of a 4-fold coordination and decreases of the molecular dipole moment and of the spread of the lowest unoccupied molecular orbital with increasing temperature.

Statistics

Citations

Dimensions.ai Metrics
126 citations in Web of Science®
126 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 23 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > Physical and Theoretical Chemistry
Language:English
Date:January 2006
Deposited On:23 Mar 2009 18:41
Last Modified:01 Dec 2023 02:43
Publisher:American Chemical Society
ISSN:1089-5639
OA Status:Closed
Publisher DOI:https://doi.org/10.1021/jp0535947
PubMed ID:16405336