Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex

Pilaz, L J; Patti, D; Marcy, G; Ollier, E; Pfister, S; Douglas, R J; Betizeau, M; Cortay, V; Doerflinger, N; Kennedy, H; Dehay, C (2009). Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 106(51):21924-21929.

Abstract

The link between cortical precursors G1 duration (TG1) and their mode of division remains a major unresolved issue of potential importance for regulating corticogenesis. Here, we induced a 25% reduction in TG1 in mouse cortical precursors via forced expression of cyclin D1 and cyclin E1. We found that in utero electroporation-mediated gene transfer transfects a cohort of synchronously cycling precursors, necessitating alternative methods of measuring cell-cycle phases to those classical used. TG1 reduction promotes cell-cycle reentry at the expense of differentiation and increases the self-renewal capacities of Pax6 precursors as well as of Tbr2 basal precursors (BPs). A population level analysis reveals sequential and lineage-specific effects, showing that TG1 reduction: (i) promotes Pax6 self-renewing proliferative divisions before promoting divisions wherein Pax6 precursors generate Tbr2 BPs and (ii) promotes self-renewing proliferative divisions of Tbr2 precursors at the expense of neurogenesis, thus leading to an amplification of the BPs pool in the subventricular zone and the dispersed mitotic compartment of the intermediate zone. These results point to the G1 mode of division relationship as an essential control mechanism of corticogenesis. This is further supported by long-term studies showing that TG1 reduction results in cytoarchitectural modifications including supernumerary supragranular neuron production. Modeling confirms that the TG1-induced changes in neuron production and laminar fate are mediated via the changes in the mode of division. These findings also have implications for understanding the mechanisms that have contributed to brain enlargement and complexity during evolution.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:December 2009
Deposited On:06 Mar 2010 16:38
Last Modified:04 Mar 2025 02:37
Publisher:National Academy of Sciences
ISSN:0027-8424
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.0909894106
Related URLs:http://www.ini.uzh.ch/node/24349 (Organisation)
PubMed ID:19959663

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
179 citations in Web of Science®
182 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

82 downloads since deposited on 06 Mar 2010
3 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications