Header

UZH-Logo

Maintenance Infos

Comparative landscape genetics and the adaptive radiation of Darwin's finches: the role of peripheral isolation


Petren, K; Grant, P R; Grant, B R; Keller, L F (2005). Comparative landscape genetics and the adaptive radiation of Darwin's finches: the role of peripheral isolation. Molecular Ecology, 14(10):2943-2957.

Abstract

We use genetic divergence at 16 microsatellite loci to investigate how geographical features of the Galápagos landscape structure island populations of Darwin’s finches. We compare the three most genetically divergent groups of Darwin’s finches comprising morphologically and ecologically similar allopatric populations: the cactus finches (Geospiza scandens and Geospiza conirostris), the sharp-beaked ground finches (Geospiza difficilis) and the
warbler finches (Certhidea olivacea and Certhidea fusca). Evidence of reduced genetic diversity due to drift was limited to warbler finches on small, peripheral islands. Evidence of low levels of recent interisland migration was widespread throughout all three groups. The hypothesis of distance-limited dispersal received the strongest support in cactus and sharp-beaked ground finches as evidenced by patterns of isolation by distance, while warbler finches showed a weaker relationship. Support for the hypothesis that gene flow constrains morphological divergence was only found in one of eight comparisons within these groups. Among warbler finches, genetic divergence was relatively high while phenotypic divergence was low, implicating stabilizing selection rather than constraint due to gene flow. We conclude that the adaptive radiation of Darwin’s finches has occurred in the presence of ongoing but low levels of gene flow caused by distance-dependent interisland dispersal. Gene flow does not constrain phenotypic divergence, but may augment genetic variation and facilitate evolution due to natural selection. Both microsatellites and mtDNA agree in that subsets of peripheral populations of two older groups are genetically more similar to other species that underwent dramatic morphological change. The apparent decoupling of morphological and molecular evolution may be accounted for by a modification of Lack’s two-stage model of speciation: relative ecological stasis in allopatry followed by secondary contact, ecological interactions and asymmetric phenotypic divergence.

Abstract

We use genetic divergence at 16 microsatellite loci to investigate how geographical features of the Galápagos landscape structure island populations of Darwin’s finches. We compare the three most genetically divergent groups of Darwin’s finches comprising morphologically and ecologically similar allopatric populations: the cactus finches (Geospiza scandens and Geospiza conirostris), the sharp-beaked ground finches (Geospiza difficilis) and the
warbler finches (Certhidea olivacea and Certhidea fusca). Evidence of reduced genetic diversity due to drift was limited to warbler finches on small, peripheral islands. Evidence of low levels of recent interisland migration was widespread throughout all three groups. The hypothesis of distance-limited dispersal received the strongest support in cactus and sharp-beaked ground finches as evidenced by patterns of isolation by distance, while warbler finches showed a weaker relationship. Support for the hypothesis that gene flow constrains morphological divergence was only found in one of eight comparisons within these groups. Among warbler finches, genetic divergence was relatively high while phenotypic divergence was low, implicating stabilizing selection rather than constraint due to gene flow. We conclude that the adaptive radiation of Darwin’s finches has occurred in the presence of ongoing but low levels of gene flow caused by distance-dependent interisland dispersal. Gene flow does not constrain phenotypic divergence, but may augment genetic variation and facilitate evolution due to natural selection. Both microsatellites and mtDNA agree in that subsets of peripheral populations of two older groups are genetically more similar to other species that underwent dramatic morphological change. The apparent decoupling of morphological and molecular evolution may be accounted for by a modification of Lack’s two-stage model of speciation: relative ecological stasis in allopatry followed by secondary contact, ecological interactions and asymmetric phenotypic divergence.

Statistics

Citations

Dimensions.ai Metrics
152 citations in Web of Science®
152 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 09 Apr 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Life Sciences > Genetics
Language:English
Date:September 2005
Deposited On:09 Apr 2009 15:01
Last Modified:24 Jun 2022 10:18
Publisher:Wiley-Blackwell
ISSN:0962-1083
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/j.1365-294X.2005.02632.x