Header

UZH-Logo

Maintenance Infos

Liposome-based vaccines


Schwendener, R A; Ludewig, B; Cerny, A; Engler, O (2010). Liposome-based vaccines. In: Weissig, V. Liposomes, Methods and Protocols, Vol. 1: Pharmaceutical Nanocarriers. New York, NY, USA: Springer, 163-175.

Abstract

Here, we report methods of preparation of liposome vaccine formulations for the entrapment of antigenic peptides and antigen encoding plasmid DNAs. Two examples of liposomal vaccine formulations producing highly effective immune responses are given. Firstly, a formulation with encapsulated antigenic peptides derived from the hepatitis C virus NS4 and the core proteins, and secondly, the encapsulation of a plasmid DNA encoding the gp33 glycoprotein of the lymphocytic choriomeningitis virus (LCMV). Vaccination with liposomal HCV peptides in HLA-A2 transgenic mice by subcutaneous injections induced strong cytotoxic T cell responses as shown by lysis of human target cells expressing HCV proteins. The immunogenicity of the liposomal peptide vaccines was further enhanced by incorporation of immunostimulatory CpG oligonucleotide sequences, shown by a strong increase of the frequency of IFN-gamma secreting cells that persisted at high levels for long periods of time. With the LCMV model, we could show that upon intradermal injection, plasmid-DNA liposomes formed LCMV gp33 antigen depots facilitating long-lasting in vivo antigen loading of dendritic cells (DC), followed by a strong immune response. Our data show that liposomal formulations of peptide or plasmid-DNA vaccines are highly effective at direct in vivo antigen loading and activation of DC leading to protective antiviral and anti-tumor immune responses.

Abstract

Here, we report methods of preparation of liposome vaccine formulations for the entrapment of antigenic peptides and antigen encoding plasmid DNAs. Two examples of liposomal vaccine formulations producing highly effective immune responses are given. Firstly, a formulation with encapsulated antigenic peptides derived from the hepatitis C virus NS4 and the core proteins, and secondly, the encapsulation of a plasmid DNA encoding the gp33 glycoprotein of the lymphocytic choriomeningitis virus (LCMV). Vaccination with liposomal HCV peptides in HLA-A2 transgenic mice by subcutaneous injections induced strong cytotoxic T cell responses as shown by lysis of human target cells expressing HCV proteins. The immunogenicity of the liposomal peptide vaccines was further enhanced by incorporation of immunostimulatory CpG oligonucleotide sequences, shown by a strong increase of the frequency of IFN-gamma secreting cells that persisted at high levels for long periods of time. With the LCMV model, we could show that upon intradermal injection, plasmid-DNA liposomes formed LCMV gp33 antigen depots facilitating long-lasting in vivo antigen loading of dendritic cells (DC), followed by a strong immune response. Our data show that liposomal formulations of peptide or plasmid-DNA vaccines are highly effective at direct in vivo antigen loading and activation of DC leading to protective antiviral and anti-tumor immune responses.

Statistics

Citations

Dimensions.ai Metrics
26 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 10 Mar 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, not_refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Molecular Biology
Life Sciences > Genetics
Language:English
Date:2010
Deposited On:10 Mar 2010 10:29
Last Modified:28 Jun 2022 08:55
Publisher:Springer
Series Name:Methods in Molecular Biology
Number:605
ISSN:1064-3745
ISBN:978-1-60327-359-6
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/978-1-60327-360-2_11
PubMed ID:20072880