Abstract
This study describes the organisation of the entorhinal cortex of the Megachiroptera, Strawcoloured fruit bat and Wahlberg’s epauletted fruit bat. Using Nissl and Timm stains, parvalbumin and SMI-32 immunohistochemistry, we identified 5 fields within the medial(MEA) and lateral (LEA) entorhinal areas. MEA fields ECL and EC are characterised by a poor differentiation between layers II and III, a distinct layer IV and broad, stratified layers V
and VI. LEA fields EI, ER and EL are distinguished by cell clusters in layer II, a clear differentiation between layers II and III, a wide columnar layer III, and a broad sublayer Va. Clustering in LEA layer II was more typical of the Straw-coloured fruit bat. Timm-staining was most intense in layers Ib and II across all fields, and layer III of field ER. Parvalbuminlike staining varied along a medio-lateral gradient with highest immunoreactivity in layers II and III of MEA and more lateral fields of LEA. Sparse SMI-32-like immunoreactivity was seen only in Wahlberg’s epauletted fruit bat. Of the neurons in MEA layer II, ovoid stellate cells account for ~38%, polygonal stellate cells for ~8%, pyramidal cells for ~18%, oblique
pyramidal cells for ~6%, and other neurons of variable morphology for ~29%. Differences between bats and other species in cellular make-up and cytoarchitecture of layer II may relate to their 3-dimensional habitat. Cytoarchitecture of layer V in conjunction with high
encephalisation and structural changes in the hippocampus suggest similarities in efferent hippocampal-entorhinal-cortical interactions between fruit bats and primates.