Header

UZH-Logo

Maintenance Infos

Localization and function of the membrane-bound riboflavin in the Na+-translocating NADH: quinone oxidoreductase (Na+-NQR) from Vibrio cholerae


Casutt, M S; Huber, T; Brunisholz, R; Tao, M; Fritz, G; Steuber, J (2010). Localization and function of the membrane-bound riboflavin in the Na+-translocating NADH: quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. The Journal of Biological Chemistry, 285(35):27088-27099.

Abstract

The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na(+) across the bacterial membrane. The Na(+)-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na(+)-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na(+)-NQR is discussed.

Abstract

The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na(+) across the bacterial membrane. The Na(+)-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na(+)-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na(+)-NQR is discussed.

Statistics

Citations

Dimensions.ai Metrics
35 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

65 downloads since deposited on 20 Sep 2010
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry

04 Faculty of Medicine > Functional Genomics Center Zurich
08 Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Life Sciences > Cell Biology
Language:English
Date:2010
Deposited On:20 Sep 2010 09:24
Last Modified:05 Dec 2023 02:41
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1074/jbc.M109.071126
PubMed ID:20558724
  • Content: Accepted Version