Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Challenges in combining projections from multiple climate models

Cermak, J; Furrer, R; Knutti, R; Meehl, G A; Tebaldi, C (2010). Challenges in combining projections from multiple climate models. Journal of Climate, 23(10):2739-2758.

Abstract

Recent coordinated efforts, in which numerous general circulation climate models have been run for a common set of experiments, have produced large datasets of projections of future climate for various scenarios. Those multimodel ensembles sample initial conditions, parameters, and structural uncertainties in the model design, and they have prompted a variety of approaches to quantifying uncertainty in future climate change. International climate change assessments also rely heavily on these models. These assessments often provide equal-weighted averages as best-guess results, assuming that individual model biases will at least partly cancel and that a model average prediction is more likely to be correct than a prediction from a single model based on the result that a multimodel average of present-day climate generally outperforms any individual model. This study outlines the motivation for using multimodel ensembles and discusses various challenges in interpreting them. Among these challenges are that the number of models in these ensembles is usually small, their distribution in the model or parameter space is unclear, and that extreme behavior is often not sampled. Model skill in simulating present-day climate conditions is shown to relate only weakly to the magnitude of predicted change. It is thus unclear by how much the confidence in future projections should increase based on improvements in simulating present-day conditions, a reduction of intermodel spread, or a larger number of models. Averaging model output may further lead to a loss of signal—for example, for precipitation change where the predicted changes are spatially heterogeneous, such that the true expected change is very likely to be larger than suggested by a model average. Last, there is little agreement on metrics to separate “good” and “bad” models, and there is concern that model development, evaluation, and posterior weighting or ranking are all using the same datasets. While the multimodel average appears to still be useful in some situations, these results show that more quantitative methods to evaluate model performance are critical to maximize the value of climate change projections from global models.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Scopus Subject Areas:Physical Sciences > Atmospheric Science
Language:English
Date:2010
Deposited On:09 Nov 2010 12:43
Last Modified:12 Jan 2025 04:33
Publisher:AMS, Boston MA
ISSN:0894-8755
Additional Information:© Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyright@ametsoc.org.
OA Status:Green
Publisher DOI:https://doi.org/10.1175/2009JCLI3361.1

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
878 citations in Web of Science®
945 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

460 downloads since deposited on 09 Nov 2010
13 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications