Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Migration von ZORA auf die Software DSpace

ZORA will change to a new software on 8th September 2025. Please note: deadline for new submissions is 21th July 2025!

Information & dates for training courses can be found here: Information on Software Migration.

Hydrogen-Promoted Chlorination of RuO2(110)

Hofmann, J P; Zweidinger, S; Knapp, M; Seitsonen, A P; Schulte, K; Andersen, J N; Lundgren, E; Over, H (2010). Hydrogen-Promoted Chlorination of RuO2(110). Journal of Physical Chemistry C, 114(24):10901-10909.

Abstract

High-resolution core-level photoemission spectroscopy and temperature-programmed reaction experiments together with density functional theory calculations were used to elucidate on the atomic scale the chlorination mechanism of ruthenium dioxide RuO2(110) by hydrogen chloride exposure. The surface-selective chlorination accounts for the extraordinary stability of the RuO2 catalyst in the Sumitomo process ? the heterogeneously catalyzed oxidation of hydrogen chloride by oxygen. The selective replacement of bridging oxygen atoms by chlorine atoms depends on the formation of water molecules serving as leaving groups. Water is produced by the chlorine-assisted recombination of two neighboring surface hydroxyl groups at around 450 K, a temperature where water instantaneously leaves the surface. Finally, the bridging vacancy is rapidly filled in by chlorine atoms, thereby forming bridging chlorine atoms. Preadsorbed hydrogen has shown to facilitate the chlorination process for stoichiometry reasons. The general strategy of transforming bridging O atoms into a good leaving group has been corroborated by the chlorination of RuO2(110) via CO pretreatment with CO2 as the leaving group and subsequent Cl2 exposure.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > Electronic, Optical and Magnetic Materials
Physical Sciences > General Energy
Physical Sciences > Physical and Theoretical Chemistry
Physical Sciences > Surfaces, Coatings and Films
Language:English
Date:2 June 2010
Deposited On:23 Dec 2010 12:29
Last Modified:04 Jul 2025 01:39
Publisher:American Chemical Society
ISSN:1932-7447
Additional Information:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/jp103199x.
OA Status:Green
Publisher DOI:https://doi.org/10.1021/jp103199x

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
27 citations in Web of Science®
27 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

171 downloads since deposited on 23 Dec 2010
22 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications