Header

UZH-Logo

Maintenance Infos

Atomically precise bottom-up fabrication of graphene nanoribbons


Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached; Bieri, Marco; Braun, Thomas; Blankenburg, Stephan; Muoth, Matthias; Seitsonen, Ari Paavo; Saleh, Moussa; Feng, Xinliang; Müllen, Klaus; Fasel, Roman (2010). Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466(7305):470-473.

Abstract

Graphene nanoribbons-narrow and straight-edged stripes of graphene, or single-layer graphite-are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices. In particular, although the two-dimensional parent material graphene exhibits semimetallic behaviour, quantum confinement and edge effects should render all graphene nanoribbons with widths smaller than 10 nm semiconducting. But exploring the potential of graphene nanoribbons is hampered by their limited availability: although they have been made using chemical, sonochemical and lithographic methods as well as through the unzipping of carbon nanotubes, the reliable production of graphene nanoribbons smaller than 10 nm with chemical precision remains a significant challenge. Here we report a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling of molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation. The topology, width and edge periphery of the graphene nanoribbon products are defined by the structure of the precursor monomers, which can be designed to give access to a wide range of different graphene nanoribbons. We expect that our bottom-up approach to the atomically precise fabrication of graphene nanoribbons will finally enable detailed experimental investigations of the properties of this exciting class of materials. It should even provide a route to graphene nanoribbon structures with engineered chemical and electronic properties, including the theoretically predicted intraribbon quantum dots, superlattice structures and magnetic devices based on specific graphene nanoribbon edge states.

Abstract

Graphene nanoribbons-narrow and straight-edged stripes of graphene, or single-layer graphite-are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices. In particular, although the two-dimensional parent material graphene exhibits semimetallic behaviour, quantum confinement and edge effects should render all graphene nanoribbons with widths smaller than 10 nm semiconducting. But exploring the potential of graphene nanoribbons is hampered by their limited availability: although they have been made using chemical, sonochemical and lithographic methods as well as through the unzipping of carbon nanotubes, the reliable production of graphene nanoribbons smaller than 10 nm with chemical precision remains a significant challenge. Here we report a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling of molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation. The topology, width and edge periphery of the graphene nanoribbon products are defined by the structure of the precursor monomers, which can be designed to give access to a wide range of different graphene nanoribbons. We expect that our bottom-up approach to the atomically precise fabrication of graphene nanoribbons will finally enable detailed experimental investigations of the properties of this exciting class of materials. It should even provide a route to graphene nanoribbon structures with engineered chemical and electronic properties, including the theoretically predicted intraribbon quantum dots, superlattice structures and magnetic devices based on specific graphene nanoribbon edge states.

Statistics

Citations

Dimensions.ai Metrics
2717 citations in Web of Science®
2844 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 23 Dec 2010
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:2010
Deposited On:23 Dec 2010 11:39
Last Modified:09 Nov 2022 09:19
Publisher:Nature Publishing Group
ISSN:0028-0836
OA Status:Closed
Publisher DOI:https://doi.org/10.1038/nature09211
PubMed ID:20651687