Abstract
Abnormal growth of glomerular mesangial cells (GMCs) contributes to the pathophysiology of many types of nephropathy. Because adenosine is an autocrine/paracrine factor that potentially could regulate GMC proliferation and because the extracellular 3',5'-cAMP-adenosine pathway (i.e., the conversion of extracellular 3',5'-cAMP to 5'-AMP and adenosine on the cell surface) could generate adenosine in the biophase of GMC receptors, we investigated the role of the 3',5'-cAMP-adenosine pathway in modulating growth [cell proliferation, DNA synthesis ([(3)H]thymidine incorporation), collagen synthesis ([(3)H]proline incorporation), and mitogen-activated protein kinase activity] of GMCs. The addition of exogenous 3',5'-cAMP to human GMCs increased extracellular levels of 5'-AMP, adenosine, and inosine, and 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor), 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor), and alpha,beta-methylene-adenosine-5'-diphosphate (ecto-5'-nucleotidase inhibitor) attenuated the increases in adenosine and inosine. Forskolin augmented extracellular 3',5'-cAMP and adenosine concentrations, and 2',5'-dideoxyadenosine (adenylyl cyclase inhibitor) blocked these increases. Exogenous 3',5'-cAMP and forskolin inhibited all indices of cell growth, and antagonism of A(2) [(E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine, KF17837] or A(1)/A(2) (1,3-dipropyl-8-p-sulfophenylxanthine, DPSPX), but not A(1) (8-cyclopentyl-1,3-dipropylxanthine), or A(3){N-(2-methoxyphenyl)-N'-[2-(3-pyridinyl)-4-quinazolinyl]-urea, VUF5574}, adenosine receptors blocked the growth-inhibitory actions of exogenous 3',5'-cAMP, but not the effects of 8-bromo-3',5'-cAMP (stable 3',5'-cAMP analog). Erythro-9-(2-hydroxy-3-nonyl)adenine (adenosine deaminase inhibitor) plus 5-iodotubercidin (adenosine kinase inhibitor) enhanced the growth inhibition by exogenous 3',5'-cAMP and forskolin, and A(2) receptor antagonism blocked this effect. In rat GMCs, down-regulation of A(2B) receptors with antisense, but not sense or scrambled, oligonucleotides abrogated the inhibitory effects of 3',5'-cAMP and forskolin on cell growth. The extracellular 3',5'-cAMP-adenosine pathway exists in GMCs and attenuates cell growth via A(2B) receptors. Pharmacological augmentation of this pathway could abate pathological glomerular remodeling.
Abstract
Abnormal growth of glomerular mesangial cells (GMCs) contributes to the pathophysiology of many types of nephropathy. Because adenosine is an autocrine/paracrine factor that potentially could regulate GMC proliferation and because the extracellular 3',5'-cAMP-adenosine pathway (i.e., the conversion of extracellular 3',5'-cAMP to 5'-AMP and adenosine on the cell surface) could generate adenosine in the biophase of GMC receptors, we investigated the role of the 3',5'-cAMP-adenosine pathway in modulating growth [cell proliferation, DNA synthesis ([(3)H]thymidine incorporation), collagen synthesis ([(3)H]proline incorporation), and mitogen-activated protein kinase activity] of GMCs. The addition of exogenous 3',5'-cAMP to human GMCs increased extracellular levels of 5'-AMP, adenosine, and inosine, and 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor), 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor), and alpha,beta-methylene-adenosine-5'-diphosphate (ecto-5'-nucleotidase inhibitor) attenuated the increases in adenosine and inosine. Forskolin augmented extracellular 3',5'-cAMP and adenosine concentrations, and 2',5'-dideoxyadenosine (adenylyl cyclase inhibitor) blocked these increases. Exogenous 3',5'-cAMP and forskolin inhibited all indices of cell growth, and antagonism of A(2) [(E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine, KF17837] or A(1)/A(2) (1,3-dipropyl-8-p-sulfophenylxanthine, DPSPX), but not A(1) (8-cyclopentyl-1,3-dipropylxanthine), or A(3){N-(2-methoxyphenyl)-N'-[2-(3-pyridinyl)-4-quinazolinyl]-urea, VUF5574}, adenosine receptors blocked the growth-inhibitory actions of exogenous 3',5'-cAMP, but not the effects of 8-bromo-3',5'-cAMP (stable 3',5'-cAMP analog). Erythro-9-(2-hydroxy-3-nonyl)adenine (adenosine deaminase inhibitor) plus 5-iodotubercidin (adenosine kinase inhibitor) enhanced the growth inhibition by exogenous 3',5'-cAMP and forskolin, and A(2) receptor antagonism blocked this effect. In rat GMCs, down-regulation of A(2B) receptors with antisense, but not sense or scrambled, oligonucleotides abrogated the inhibitory effects of 3',5'-cAMP and forskolin on cell growth. The extracellular 3',5'-cAMP-adenosine pathway exists in GMCs and attenuates cell growth via A(2B) receptors. Pharmacological augmentation of this pathway could abate pathological glomerular remodeling.
Statistics
Downloads
0 downloads since deposited on 12 Nov 2010
0 downloads since 12 months
Additional indexing