Electrostatic contribution to the thermodynamic and kinetic stability of the homotrimeric coiled coil Lpp-56: A computational study

Bjelic, S; Wieninger, S; Jelesarov, I; Karshikoff, A
Electrostatic contribution to the thermodynamic and kinetic stability of the homotrimeric coiled coil Lpp-56: A computational study

Abstract

The protein moiety of the Braun's E. coli outer membrane lipoprotein (Lpp-56) is an attractive object of biophysical investigation in several aspects. It is a homotrimeric, parallel coiled coil, a class of coiled coils whose stability and folding have been studied only occasionally. Lpp-56 possesses unique structural properties and exhibits extremely low rates of folding and unfolding. It is natural to ask how the specificity of the structure determines the extraordinary physical chemical properties of this protein. Recently, a seemingly controversial data on the stability and unfolding rate of Lpp-56 have been published (Dragan et al., Biochemistry 2004;43: 14891-14900; Bjelic et al., Biochemistry 2006;45:8931-8939). The unfolding rate constant measured using GdmCl as the denaturing agent, though extremely low, was substantially higher than that obtained on the basis of thermal unfolding. If this large difference arises from the effect of screening of electrostatic interactions induced by GdmCl, electrostatic interactions would appear to be an important factor determining the unusual properties of Lpp-56. We present here a computational analysis of the electrostatic properties of Lpp-56 combining molecular dynamics simulations and continuum pK calculations. The pH-dependence of the unfolding free energy is predicted in good agreement with the experimental data: the change in DeltaG between pH 3 and pH 7 is approximately 60 kJ mol(-1). The results suggest that the difference in the stability of the protein observed using different experimental methods is mainly because of the effect of the reduction of electrostatic interactions when the salt (GdmCl) concentration increases. We also find that the occupancy of the interhelical salt bridges is unusually high. We hypothesize that electrostatic interactions, and the interhelical salt bridges in particular, are an important factor determining the low unfolding rate of Lpp-56.
Electrostatic Contribution to the Thermodynamic and Kinetic Stability of the Homotrimeric Coiled Coil Lpp-56: A Computational Study
Saša Bjelić¹, Silke Wieninger²,³, Ilian Jelesarov¹ and Andrey Karshikoff²,*

¹ Biochemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
² Karolinska Institute, Department of Biosciences and Nutrition, Stockholm, Sweden
³ ERASMUS programme student on leave from University of Bayreuth
* To whom correspondence should be addressed:
Andrey Karshikoff, Ph.D., Dr.Sci.
Karolinska Institutet
Dep. Biosciences and Nutrition
S-14157 Huddinge, Sweden
Tel. +46-8-6089180
Fax +46-8-6089179
aka@csb.ki.se
ABSTRACT

The protein moiety of the Braun's *E. coli* outer membrane lipoprotein protein (Lpp-56) is an attractive object of biophysical investigation in several aspects. It is a homotrimeric, parallel coiled coil, a class of coiled coils whose stability and folding have been studied only occasionally. Lpp-56 possesses unique structural properties and exhibits extremely low rates of folding and unfolding. It is natural to ask how the specificity of the structure determines the extraordinary physical chemical properties of this protein. Recently, seemingly controversial data on the stability and unfolding rate of Lpp-56 have been published [Dragan et al. (2004) Biochemistry 43, 14891-14900; Bjelic et al. (2006) Biochemistry 45, 8931-8939]. The unfolding rate constant measured using GdmCl as the denaturing agent, though extremely low, was substantially higher than that obtained on the basis of thermal unfolding. If this large difference arises from the effect of screening of electrostatic interactions induced by GdmCl, electrostatic interactions would appear to be an important factor determining the unusual properties of Lpp-56. We present here a computational analysis of the electrostatic properties of Lpp-56 combining molecular dynamics simulations and continuum pK calculations. The results suggest that the difference in the stability of the protein observed using different experimental methods is mainly due to effect of the reduction of electrostatic interactions when the salt (GdmCl) concentration increases. We also find that the occupancy of the interhelical salt bridges is unusually high. We hypothesize that electrostatic interactions, and the interhelical salt bridges in particular, are an important factor determining the low unfolding rate of Lpp-56.

Keywords: electrostatic interactions, protein stability, unfolding kinetics, molecular dynamics, salt bridge, coiled coil
INTRODUCTION

The coiled coil is a ubiquitously encountered structural motif in proteins.\(^1\) Amino acid stretches bearing direct repetition of the \textit{abcdef} heptad pattern form two-, three- or higher-order superhelices. The strandedness (degree of oligomerisation), the orientation (parallel \textit{versus} antiparallel), and the registry (in-register \textit{versus} out-of-register) are dictated by the nature of mostly aliphatic side chains occupying positions \(a\) and \(d\), in an intimate interplay with the nature of mostly charged side chains occupying positions \(e\) and \(g\). Given the apparent simplicity of the motif, coiled coils have attracted attention as a model for investigating the sequence-structure-energy relationships in protein folding. However, the main body of knowledge about coiled coil folding stems from investigations of short, dimeric, three- to five-heptad long species. Higher-order coiled coils are less well characterized.

The 56 amino acid long protein moiety of the \textit{E. coli} outer membrane protein (henceforth referred as Lpp-56) is a parallel, in-register, trimeric coiled coil.\(^2\) The physiological importance of this protein in maintaining the structural integrity of the \textit{E. coli} cell wall has been reviewed.\(^3\) Recently, we have determined the equilibrium stability, and the rates of unfolding and refolding of Lpp-56 at pH 7.\(^4\) In this study we used GdmCl to shift the equilibrium between folded trimer and unfolded monomer, and to modulate the refolding and unfolding rates. The unfolding free energy, \(\Delta G^{Gdm}\), obtained by extrapolation to zero denaturant according to the linear extrapolation method is 79±10 kJ mol\(^{-1}\). A substantially larger value, \(\Delta G^{therm} = 137\) kJ mol\(^{-1}\), has been determined from calorimetric experiments.\(^5\) Interestingly, \(\Delta G^{therm}\) at pH 3, where salt bridges are believed to be disrupted by protonation of acidic side chains, is on the order of 70 kJ mol\(^{-1}\).\(^5\) Since GdmCl is a salt it is intuitive to assume that the discrepancy can be attributed to screening of electrostatic interactions when the unfolding free energy is evaluated by linear extrapolation of data collected at high salt (GdmCl) conditions, leading to a severe underestimation of \(\Delta G^{Gdm}\). However, we reasoned that if Lpp-56 obeys the two-state unfolding model (neither we, nor Dragan et al. have detected intermediate states) the contribution of electrostatic interactions that are eliminated by salt should be between 10 and 20 kJ mol\(^{-1}\). The latter value is pretty close to previous estimates of the magnitude of the electrostatic contribution to protein stability, but is
rather low to explain the difference in the unfolding free energy obtained by us and by Dragan et al.

One striking property of Lpp-56 is its extremely low unfolding rate. Our own estimate\(^4\) of the unfolding rate constant is on the order of 10^{-10} to 10^{-13}s^{-1}. The data of Dragan et al.\(^5\) predict an even lower unfolding rate constant, on the order of 10^{-21}s^{-1}. Both estimates demonstrate an extremely high kinetic stability of Lpp-56, yet the difference appears too large to be explained by the charge screening effect of GdmCl used in our experiments. Nevertheless, based on the steep dependence of the activation unfolding energy on GdmCl concentration at pH 7 and the much faster unfolding at pH 3, we speculated that there is a large electrostatic contribution to the free energy barrier for unfolding.

Indeed, each Lpp-56 polypeptide contains 8 acidic side chains (exclusively aspartic acid) and 8 basic side chains (4 lysines and 4 arginines). In addition, the C-terminal carboxylates and the three tyrosines (one per chain) are potentially capable to participate in salt bridge formation. As in other coiled coils, reflecting the repetitive heptad organisation of the molecule, the interhelical salt bridges form a system of rings girdling the three-helix bundle of Lpp-56 along its length (Fig. 1).

These peculiarities of Lpp-56, together with the large number of potential salt bridges seen in the crystal structure\(^2\) motivated us to investigate the role of electrostatic interactions in the stabilisation of the native structure of Lpp-56. To our knowledge, there are no published experimental data on ionisation constants of the titratable groups or a potentiometric titration curve of Lpp-56, which can facilitate the analysis of electrostatic interactions. Therefore, our investigation essentially relies on theoretical prediction of ionisation equilibria. This creates some difficulties in the quantitative assessment of the results, especially results concerning the thermodynamic stability of the protein. In spite of this we extract information about the magnitude of the screening effect of salt on electrostatic interactions. Furthermore, we demonstrate the presence of unusually stable salt bridges and, on the basis of this observation, formulate a hypothesis explaining the extremely low unfolding rate of Lpp-56.
COMPUTATIONAL METHOD

Theoretical background. A comprehensive discussion of the theoretical prediction of the electrostatic free energy of proteins is presented in the work of Yang and Honig.\(^6\) Basically, our approach does not differ from that of Yang and Honig. Here we stress the differences in the strategy of solving this task. At a given set of conditions (such as temperature, ionic strength, etc.) the electrostatic term of the unfolding free energy of a protein is given by the expression

\[
\Delta G^{el}(\text{pH}) = \Delta G^{el,U}(\text{pH}) - \Delta G^{el,F}(\text{pH}),
\]

where \(\Delta G^{el,U}\) and \(\Delta G^{el,F}\) are the electrostatic free energies of the unfolded and folded states, respectively. The explicit notation of \(\Delta G^{el}\) as a function of pH reflects our main assumption, namely that the main contribution to the electrostatic free energy of the protein arises from the interactions in which the titratable groups are involved. The terms \(\Delta G^{el,U}\) and \(\Delta G^{el,F}\) are defined in respect to a certain reference state. Different reference states can be chosen. For instance, Yang and Honig\(^6\) have chosen pH equal to 0, whereas Langella et al.\(^7\) defined it as an abstract state at which all titratable groups in the protein are in their neutral forms. In this work we choose another abstract reference state; that is an extreme acidic pH, \(\text{pH}_0\), at which the protein is fully protonated in both, folded and unfolded states. The electrostatic term of the free energy of unfolding at given pH can then be obtained (see ref. 6 and the references therein) by

\[
\Delta G^{el}(\text{pH}) = 2.3RT \int_{\text{pH}_0}^{\text{pH}} (\nu^U(\text{pH}) - \nu^F(\text{pH})) \text{d}\text{pH},
\]

where

\[
\nu^{U,F}(\text{pH}) = \sum_{i=1}^{N} \theta_{i}^{U,F}(\text{pH})
\]

are the average number of protons bound to the protein molecule in the unfolded \((U)\) and in the folded \((F)\) state, respectively, \(\theta_{i}\) is the degree of protonation of titratable site \(i\), and \(N\) is the total number of titratable sites. Obviously, \(\theta_{i}^{U}(\text{pH}_0) = \theta_{i}^{F}(\text{pH}_0)\) in the reference state. Following Bashford and Karplus\(^8,9\) the degree of protonation of site \(i\) is given by:
The energy $E(x, \text{pH})$ is the electrostatic energy corresponding to a single protonation state, x, of the protein molecule:

$$E(x, \text{pH}) = -2.3RT \sum_i x_i (pK_{i,\text{int}} - \text{pH}) + \frac{1}{2} \sum_{i \neq j} W_{ij,\text{pc}}.$$ \hspace{1cm} (4)

A single protonation state is determined by the sequence $x = (x_1, x_2, \ldots, x_i, x_j, \ldots, x_N)$, the elements of which describe the microscopic protonation states of the individual titratable sites. In this work we assume that the individual titratable sites have only two microscopic states: $x_i = 0$ (protonated) and $x_i = 1$ (deprotonated). The electrostatic energy of interaction between sites i and j in protonation state x_i and x_j, respectively, is given by $W_{ij,\text{pc}}$, whereas $pK_{i,\text{int}}$ is the intrinsic pK value of site i defined as

$$pK_{i,\text{int}} = pK_{i,\text{mod}} + \Delta pK_{i,Born} + \Delta pK_{i,pc}.$$ \hspace{1cm} (5)

The first term in the right hand side of the above equation, $pK_{i,\text{mod}}$, is the equilibrium constant of a model compound, for instance acetyl-X-amide, where X stands for the different titratable side chains. The correction $\Delta pK_{i,Born}$ is the shift of the ionisation equilibrium constant of site i due to its desolvation. $\Delta pK_{i,pc}$ is the pK shift caused by the electrostatic interactions of this site with the partial atomic charges of the protein molecule which do not belong to any titratable group.

Eqs. (3 and 4) is valid for both folded and unfolded states of the protein. In the case of folded proteins the values of $W_{ij,\text{pc}}$ and $\Delta pK_{i,pc}$ depend on the specific configuration of the charges in the molecule. Also, $\Delta pK_{i,Born}$ is uniquely defined by the structural organisation of the surroundings of the individual titratable sites. In other words, the values of these three factors are in general different for the different titratable sites, a feature determined by the protein structure. A direct source of structural information needed for the calculation of the above factors is the three-dimensional structure of the protein obtained by X-ray crystallography. Prediction of the electrostatic properties of proteins based on crystal structures often faces difficulties arising from the fixed three-dimensional structure itself. It is known that the X-ray structure does not necessarily represent the ensemble of structures of the protein in solution. For instance, due to the effect of the crystal contacts regions of the protein molecule may preferably
adapt conformations which are not populated in solution. Also, conformational changes may occur upon changes of the protonation state of the protein. This property of the native protein structure, which we refer to as conformational flexibility, is one of the sources of discrepancy between prediction and experiment.

Methods for calculation of electrostatic interactions that take into account the conformational flexibility are intensively developing.6,10-14 Recently we have developed an approach for pK calculations that accounts for an elementary conformational flexibility limited to tautomers and rotamers of polar groups.15,16 In spite of its limitations this approach has some advantages: it does not need extension of the basic assumptions of continuum electrostatic theory for pK calculations and does not increase the complexity of the computations. Alexov and Gunner advanced a relatively more general method, in which different conformations of the side chains are taken into account. The variety of conformers can be assembled from different X-ray structure14 or generated by a Monte Carlo sampling procedure.17

Alternative approaches to account for the conformational flexibility of proteins include the use of sets of NMR conformers18 or ensembles of structures generated by MD simulations.6,19,20 The combination of MD and pK calculations results in an overall improvement of the theoretically predicted pK values. However, discrepancies between experimental and calculated pK values remain most often for groups buried in the protein interior. A possible reason for this is that the conformational space sampling is limited, and predetermined by the choice protonation states of the titratable groups used in the simulation. As pointed out by Langella et al.7, the prediction of ionisation equilibria far from the pH value at which the experimental structure is determined should be taken with caution. Obviously, this is valid also when structures generated by MD simulation are used. Nevertheless, in our opinion, the combination of pK calculations and MD simulation is currently the most promising approach. In the investigation presented in this paper, the ionisation equilibria in folded state of Lpp-56 have been calculated by a continuum electrostatic model combined with MD simulation as described in our previous work.21

The titration curves of unfolded proteins, $I^U(pH)$, are often calculated on the basis of the standard ionisation constants of the different types of titratable groups. In this null approximation electrostatic interactions are in fact ignored. This approximation is
insufficient for prediction of quantities, such as the electrostatic term of unfolding energy.22

Different models for accounting for electrostatic interactions in unfolding proteins have been proposed.23-26 All these models are designed to solve concrete tasks, matching one or another feature inherent to unfolded proteins, for instance the increased hydration of the charged groups. A more general model of denatured state has been proposed by Zhou.27-30 In this model the denatured protein molecule is treated as a Gaussian chain immersed in a dielectric medium, whereas electrostatic interactions are calculated in the framework of the Debye-Hückel theory. Recently we have proposed an approach which is based on the continuum dielectric model and is ideologically very close to that of Zhou.31-33 In our model the unfolded protein molecule is represented as a material with low dielectric constant, ε_p between 20 and 40, immersed in the high permittivity medium of the solvent, $\varepsilon_s>\varepsilon_p$. The shape of the dielectric cavity can be considered as an average over all possible conformations of a flexible chain, which results in a sphere inside which most of the protein atoms reside.31 At equilibrium the titratable groups are approximated as charge points allocated on the surface of the sphere. The variety of conformers which an unfolded protein can adopt is reflected by the different configurations of the charges on the surface of the dielectric cavity. As a first approximation, one can assume random distributions of the titratable sites. However, due to the fixed position of the titratable groups along the polypeptide sequence, distances between the corresponding charges cannot be arbitrary. An algorithm for generation of quasi-random distributions taking into account the influence of the protein sequence is detailed described in ref. 31. The model has been successfully applied for calculation of the pH-dependence of the unfolding free energy of several proteins.34 This model has been employed in the presented study.

Molecular dynamics simulation. The X-ray structures of Lpp-56 (PDB entry 1eq7) and GCN4 leucine zipper (PDB entry 2zta) were used as starting point for MD simulations. The simulations were carried out with the OPLS all-atom force field, as implemented in the GROMACS simulation suite (version 3.3.1).35 The structure was solvated with TIP4 water36 at approximately 150 mM NaCl (plus additional ions to neutralize the total system). In the cubic periodic box the minimum distance between the protein and end of the box was more the 1.5 nm. After minimisation using Steepest
Descent model with a tolerance of 1000 kJ mol\(^{-1}\) nm\(^{-1}\), the system was simulated for 400 ps with harmonic position restrain on all C\(\alpha\)-atoms (force constant: 1000 kJ mol\(^{-1}\) nm\(^{-2}\)) and additional 100 ps with a force constant of 100 kJ mol\(^{-1}\) nm\(^{-2}\) in order to allow relaxation of the solvent molecules. LINCS\(^{37}\) and SETTLE\(^{38}\) algorithms were applied. The integration step was 2 fs. Short-range electrostatics were calculated explicitly, and long range electrostatic interactions were calculated using the particle-mesh Ewald method.\(^{39}\) Lennard-Jones interactions were cut at a distance of 1 nm, a long-range correction for the energy and the pressure was applied. The system were coupled to Berendsen temperature bath separately for the protein and the solvent (\(\tau_t = 0.1\) ps) and to a Berendsen pressure bath (\(\tau_p = 0.1\) ps).\(^{40}\) Trajectory visualisation and analysing was made in part using VMD.\(^{41}\)

\textbf{pK calculations.} The computational approach used to calculate \(\theta_i^F(pH)\), and respectively \(\nu^F(pH_0)\), has been described earlier.\(^{21,42}\) The values of \(pK_{\text{mod}}\) are listed in Table I. The values of \(\Delta pK_{i,\text{Born}}\) and \(\Delta pK_{i,\text{pc}}\), required to complete Eq. (5), as well as the values of \(W_{i,j,i,j}^x\), in Eq. (4) were calculated by solving the linearised Poisson-Boltzmann equation using finite difference method.\(^{43,44}\) The partial charges of all protein atoms, as well as the atomic charges of the titratable groups in protonated and deprotonated states were taken from the CHARMM parameter set.\(^{22}\) The van der Waals radii used to determine the low dielectric medium of the protein were taken from Rashin et al.\(^{46}\) To determine the protein-solvent contact surface a probe sphere with a radius of 1.4 Å was used. The calculations were performed for ionic strength of 0.12 M or 1 M and ion exclusion layer of 2 Å. The protein molecule (each snapshot structure) was situated in a grid box (99×99×99) with grid spacing of 2.55 Å, which was gradually reduced using 4 consecutive focusing steps on each titratable group. The size of the focused boxes depends on the conformations of the titratable side chains in the different snapshots structure (see below). On average, the final grid length was 0.24 Å. Solvent and protein relative dielectric constants were taken \(\varepsilon_s = 78\) and \(\varepsilon_p = 4\), respectively.

The pK calculations for denatured state were performed according the procedure described in our earlier papers.\(^{31,34}\) A radius of 17.5 Å and dielectric constant of 25\(^{34}\) were used for the low dielectric sphere representing the unfolded protein.
Coupling pK calculations with MD simulation. Protein conformations (snapshots structures) were collected each 5 ps during the last 7 ns of the MD simulation. The calculations of electrostatic interactions were performed independently for each individual snapshot structure. The degree of deprotonation of the individual titratable sites, $\bar{\theta}_i(pH)$, used in Eq. (2) (and then for calculation of ΔG^{el}) represent an arithmetic average of $\theta_i(pH)$ calculated for the individual snapshot structures. Test calculations showed that averaging over snapshot structures extracted in 5 ps and each 10 ps interval gives practically identical results. The results presented below are obtained by averaging over the interval of 10 ps.

RESULTS AND DISCUSSION

Starting from the X-ray structure we generated an ensemble of Lpp-56 conformers by a 10 ns MD simulation in explicit water. According to the usual criteria (C_α RMSD, radius of gyration, solute-solute and solute-solvent energy terms, intermolecular distances) the MD trajectory was well equilibrated in the last 7 ns of simulation, as to serve as a reliable model of the dynamic behaviour of the protein. We first describe the results on prediction of the ionisation properties of all Lpp-56 titratable groups. In a second part we attempt quantification of the electrostatic contribution to Lpp-56 stability. Finally, we discuss a simple model providing clues about networked salt bridges as a possible player in the extremely slow unfolding transition of Lpp-56.

Ionisation equilibria. The calculated pK values of the titratable sites of Lpp-56 are listed in Table I. As already mentioned, we are not aware of any experimental data which could help assessing the reliability of this result. According to our experience with other proteins, for instance ribonuclease T1, we expect that the confidence interval of calculated pK values is about 0.5 pH units. Inspecting Table I one can notice that groups situated at equivalent positions along the sequence of the three peptide chains have different pK values, which can deviate from each other by as much as 3 pH units. This reflects the fact that the corresponding side chains within the three helices visit different sets of conformations, thus creating different time-averaged environment of the titratable sites. In contrast, due to the three-fold non-crystallographic symmetry,
the pK calculated for equivalent sites using the X-ray structure vary within the confidence interval. Furthermore, about half of the titratable sites display pK values which undergo larger shifts from their standard (pK of model compounds) values when the calculations are done by averaging over the snapshot structures, in comparison to pK shifts calculated with the X-ray structure (Table II). The extreme up-shifted pK of basic groups and down-shifted pK of acidic groups reflect a strong favourable electrostatic influence of the environment. Such shifts are usually calculated or experimentally observed when the titratable groups participate in salt bridges. For a collection of MD-generated structures, the magnitude of the pK shift will depend on the population of conformers bearing a particular salt bridge formed or disrupted. In the case of equitemporal sampling the lifetime of a salt bridge determines its population. Our earlier MD simulations of xylanase21 have suggested that formation and disruption of salt bridges is an event that occurs between 300 and 500 ps. Also the salt bridges in the triplet Asp8-Arg110-Asp12 in barnase have a relatively short lifetime, making their contribution to the stability of the native structure marginal.48 The effect of reduction of the pK shift due to temporary disruption of a salt bridge is illustrated in Fig. 2 on the example of the salt bridge formed between the C-terminal carboxyl group (chain C) and LysB54. (Hereafter, the polypeptide chain to which a particular residue belongs is indicated by a capital letter inserted between the side-chain name and the sequence number). In the time window in which no salt bridge is formed, the average pK of the C-terminal carboxyl group of chain C is practically equal to pK\textsubscript{mod}. A shift of the pK value of more than 6 pH units occurs if the salt bridge with LysB54 is formed. Considering the first 2.5 ns of the simulation, the calculated average pK is approximately in the middle between the values corresponding to free and salt bridged C-terminal carboxyl group, reflecting the fact that the fractional populations of the free and salt-bridged C-terminal carboxylate are also approximately equal. For the rest of the simulation after 2.5 ns, however, the population of the salt bridge is virtually 100 % (that is, it does not break), and consequently, the average pK of the monitored C-terminal carboxyl group continuously reduces. The groups with extreme pK shifts, such as the aspartic acids at position 26 or the considered above C-terminal groups, participate in salt bridges which seldom disrupt during the MD simulation.

It turns out that the short lifetime of salt bridges suggested by our previous MD simulations is not a general rule that applies in the case of Lpp-56. Indeed, salt bridges
with lifetime longer than 1 ns have been reported.49,50 In principle, long lifetimes might be an artefact of the force field, if the attractive electrostatic term of the energy function is overestimated, thus trapping oppositely charged atoms within short distances. To check this scenario we performed a 7 ns MD simulation of the dimeric coiled-coil GCN4 using identical simulation protocol. This computational experiment revealed a different behaviour of the titratable side chains involved in salt bridges: The lifetime of the salt bridges in GCN4 is essentially lower than that obtained for Lpp-56 (See Table IV). We conclude, therefore, that the long lifetime of some salt bridges and extreme pK shifts calculated for Lpp-56 groups arise from the specific structural organisation of the protein, rather than from a computational artefact.

The pK values calculated for the unfolded state of Lpp-56 are listed in Table II. All of them are non-negligibly shifted from their standard values. The average shift away of pK\textsubscript{mod} of aspartic acids is 0.4 pH units, in good agreement with the NMR results of Tan et al.51 for the denatured state of chymotrypsin inhibitor 2. This result reiterates the arising consensus that the denatured state is not an electrostatic “dummy” and that residual electrostatic effects in that state might contribute to the energetic balance stabilising proteins.52,53

Electrostatic stabilisation of Lpp-56. The electrostatic terms of the free energy calculated (Eq. 1) on the basis of the MD snapshots structures, $\Delta G_{\text{MD}}^{\text{el}}$, and using the X-ray structure only, ΔG_{X}^{el}, are compared in Fig. 3. The stabilising contribution of the electrostatic interactions is substantially larger when calculated with the snapshot structures. This an illustration of the effect of the reduced pK shifts calculated on the basis of the X-ray structure (Table II). The absolute values of ΔG^{el} have a meaning only in respect to the reference state, which here is an extreme low pH at which the folded and the unfolded states of the protein are identically protonated. Other values of ΔG^{el} will be obtained, as seen in Fig. 3, if we choose the corresponding extreme alkaline pH. Therefore, no experimental verification of the absolute values of ΔG^{el} presented in Fig. 3 can be made. However, if we assume that only electrostatic interactions change upon the change of pH, the relative pH dependence of ΔG^{el} can be verified experimentally. The unfolding free energy of Lpp-56 at pH 3 and pH 7 have been reported by Dragan et al.5 From their data, $\Delta \Delta G^{\text{therm}}(\text{pH}3 \rightarrow \text{pH}7) = \Delta G^{\text{therm}}(\text{pH}7) - \Delta G^{\text{therm}}(\text{pH}3)$ is ~60 kJ mol-1. This value is
close to $\Delta G_{\text{MD}}^{el}$ (pH3 → pH7) = 63 kJ mol$^{-1}$ obtained by us using snapshot averaging. In contrast, calculations done with the X-ray structure predict a much smaller free energy change between pH 3 and pH 7: ΔG_X^{el} (pH3 → pH7) = 29 kJ mol$^{-1}$. The presented results are clear evidence that the introduction of conformational flexibility in the calculations of electrostatic interactions in protein improves the predictive power of the computations.

From equilibrium and kinetic data collected in the presence of GdmCl as the denaturant we recently estimated the stability of Lpp-56 as $\Delta G^{Gdm} = 79 \pm 10$ kJ mol$^{-1}$ pH 7. At the same conditions, thermal unfolding experiments have predicted much higher stability, $\Delta G^{\text{therm}} = 137$ kJ mol$^{-1}$. It is commonly appreciated that GdmCl screens charge-charge interactions, so that the electrostatic contribution, ΔG^{el}, to ΔG^{Gdm} becomes smaller as the GdmCl concentration increases. Hence, the difference between ΔG^{Gdm} and ΔG^{therm} should be essentially electrostatic in nature. ($\Delta G^{Gdm} < \Delta G^{\text{therm}}$ indicates that electrostatic effects are stabilising the protein.) Taking into account the large, experimentally observed difference between ΔG^{Gdm} and ΔG^{therm} one can presume that the contribution of electrostatic interactions to the stability of the Lpp-56 is much larger than that observed for other proteins (typically less than 20 kJ mol$^{-1}$). Indeed, we have reasoned that the linear extrapolation of the unfolding free energy from high GdmCl to zero denaturant to obtain ΔG^{Gdm} is very unlikely to underestimate the genuine stability of Lpp-56 by more than 20 kJ mol$^{-1}$. Nonetheless, the reasons for the large discrepancy between ΔG^{Gdm} and ΔG^{therm} remain obscure and, in fact, can not be discerned by experiment. In the following, we discuss a computational approach to the problem.

Although not rigorously justified in physical terms, it is believed that the energetic contribution of charge-charge interactions vanish around 1 M GdmCl. For concentrations of GdmCl less than 1 M the reduction (or strengthening) of electrostatic stabilisation can be considered as an effect of the ionic strength. In this way, the screening effect of GdmCl is reduced to calculations of ΔG^{el} for different ionic strengths:

$$\Delta \hat{G}^{el} = \Delta G^{elS} - \Delta G^{el}$$

(6)

Superscript S indicates high salt concentration, $I = 1$ M. The calculated pH dependence of $\Delta \hat{G}^{el}$ is shown in Fig. 4. Because ΔG^{el} and ΔG^{elS} are defined up to additive
constants, their values at the reference state are set to zero and \(\Delta S^\text{el} \Delta G^\text{el,ref} = 0 \). In respect to this reference state at pH 7 \(\Delta S^\text{el} \Delta G^\text{el} = -14 \, \text{kJ mol}^{-1} \). However, the latter figure has no sound physical meaning (and for that matter cannot be considered as representing the difference \(\Delta G^\text{therm} - \Delta G^\text{Gdm} \)) since the reference states in low and high ionic strengths are equalised.

The difference between the reference states used to calculate \(\Delta G^\text{el} \) and \(\Delta G^\text{el,S} \) can be evaluated. For this purpose we make use of the thermodynamic cycle

\[
\begin{align*}
F & \quad \Delta G^\text{el} \quad U \\
\Delta G^\text{el}(F \to F^S) & \downarrow \quad \Delta G^\text{el}(U \to U^S) \\
F^S & \quad \Delta G^\text{el,S} \quad U^S
\end{align*}
\]

The upper and lower horizontal limbs of the cycle represent unfolding at low (I = 0.12 M) and high (I = 1 M) ionic strengths, respectively. The left and right vertical limbs describe the hypothetical transfer of the folded (F) and unfolded (U) states, respectively, from low to high ionic strength conditions. According to the above thermodynamic cycle the change of the electrostatic free energy of unfolding upon increase of the ionic strength given in Eq. (6) can also be expressed as:

\[
\Delta S^\text{el} \Delta G^\text{el} = \Delta G^\text{el}(U \to U^S) - \Delta G^\text{el}(F \to F^S),
\]

(7)

Consider the reference state. It is chosen such that all titratable sites are protonated, i.e. the protein contains positive charges only. According to our model of the unfolded state the charges tend to adopt positions, at which the repulsive forces, and hence electrostatic interactions, are minimised. In this aspect the model mimics well the real situation, where the denatured state is flexible and the charges could rearrange as to minimise the energetic penalty of charge-charge repulsion. Therefore, in a first approximation, we can assume that for the reference state \(\Delta G^\text{el}(U \to U^S)_{\text{ref}} \) is small and can be neglected. At pH far from the reference state \(\Delta G^\text{el}(U \to U^S)_{\text{ref}} \) cannot be neglected, as illustrated in the insert of Fig. 4. Analogous assumption for the reference state of the folded protein is not valid. The positions of the charges are fixed by the three-dimensional structure of the molecule, so that unfavourable electrostatic interactions between positive charges are sizeable in the reference state. Formally, the charge-charge interactions in the reference state can be calculated by Eq. (4) where the sequence \(x = (0, \ldots, 0) \) corresponds to all titratable sites in their protonated forms. The
change of the charge-charge interactions upon the transfer of the native form of the protein in the reference state from low to high ionic strength calculated in this way amounts to -30 kJ mol^{-1} (the reference state is stabilised at high ionic strength due to the reduction of the repulsive interactions). Thus, the total change of the electrostatic free energy caused by the screening effect of GdmCl calculated for pH 7 becomes $\Delta G^\text{el}(\text{total}) = -45 \text{ kJ mol}^{-1}$.

A certain underestimation of the value of $\Delta G^\text{el}(\text{total})$ is to be expected because the high ionic strength calculations were performed with the linearised Poisson-Boltzmann equation. This time saving compromise was made having in mind that both, the linearised and non-linear Poisson-Boltzmann equations give very similar results at least up to $I = 0.5 \text{ M}$, underestimating the electrostatic energy reduction due to the salt effect by about 10%. Even ignoring this underestimation it is clear that the value of $\Delta G^\text{el}(\text{total})$ represents a significant energetic contribution. The estimated 45 kJ mol$^{-1}$ unfolding free energy reduction stemming from charge screening by salt (GdmCl for that matter) exceeds our previous estimate (10-20 kJ mol$^{-1}$). Rather, it approaches the value ($\sim 60 \text{ kJ mol}^{-1}$) corresponding to the difference between ΔG^Gdm measured by us54 and ΔG^therm obtained by Dragan et al.5

We would like to add a note of caution in interpreting the numerical value of the charge-charge contribution to the stability of Lpp-56, presumed to represent the total difference of experimentally measured unfolding free energies ($\Delta G^\text{therm} - \Delta G^\text{Gdm}$). It has been argued that both, the native and unfolded states are not fixed in their properties, depending on the physical agent used to shift the equilibrium between these states.57 The calculations presented in this work consider only the ionic strength effect. The influence of the electrolyte type, including protein-ion binding effects, is ignored. This is in fact ignoring of any denaturant-specific differences in the structure of the folded and the unfolded states. In spite of all these considerations, we conclude that indeed the difference between the unfolding free energies of Lpp-56 measured by the two different experimental approaches is to a large extent due to the screening effect of GdmCl.

Role of the salt bridges in unfolding kinetic of Lpp-56. Although folding of Lpp-56 is also slow, it appears that the high thermodynamic stability originates from an extremely low unfolding rate. Based on the strong dependence of the unfolding rate constant on the concentration of salt (GdmCl) we have speculated that there is a
significant electrostatic component to the activation energy barrier for unfolding. Here we ask whether the known high kinetic stability of Lpp-56 can be related to this electrostatic component, in particular to the observation of presence of salt bridges which seldom or never disrupt during the MD simulation.

We have mentioned that the trimeric superhelix is clamped along its length by rings of interhelical salt bridges (Fig. 1). Since the prevailing majority of them have long lifetimes it is worth having a closer look at their behaviour. In the course of the MD simulation we observe formation of 15 salt bridges. Among them 12 are interhelical links forming the charge rings illustrated in Fig. 1. The organisation of rings and the lifetimes of the constituent salt bridges constituting them are specified in Table III. The criterion for existing of salt bridge used in the following considerations is at least one donor-acceptor distance between the bridged groups to be less than 3.1 Å. This distance corresponds to the upper limit for a stable hydrogen bond. Although electrostatic attraction between the interacting groups is significant even at distances larger than the chosen criterion such configurations lose the features of a hydrogen bond.

The group of salt bridges close to the N-terminus (top in Fig. 1) do not form a ring of interhelical rings. Of certain interest are the salt bridges forming ring 1. In the X-ray structure all these salt bridges are well defined, with proton donor-to-proton acceptor distances between 2.6 and 2.9 Å, corresponding to an ideal hydrogen bond. However, it turned out that the lifetime of these salt bridges is negligible during the MD simulation. Almost opposite is the situation in Ring 2, where the salt bridges practically do not disrupt during the MD simulation, whereas in the X-ray structure only one of them satisfies the above criterion. The difference in the behaviour of these salt bridges is reflected by the large difference in the pK values of participating groups (see Table II for comparison).

Ring 3 is a cluster of salt bridges involving also intrahelical links. The pairs within the cluster exchange their partners as indicated in Table III. This feature is also illustrated in Fig. 5 for the case of LysC38. This residue adopts conformations at which it preferably interacts with AspB33 or with AspB40. The lifetime of the salt bridges this side chain forms is plotted in Fig. 6. It is important for our further considerations to note that the cross-link between the helices B and C is intact in spite of the mobility of the lysine side chain. Similar behaviour is also observed for the intramolecular salt bridges with the participation of Arg43 (see Table III). This observation leads us to the
conclusion that the stabilisation role of this ring is achieved by both, favourable interhelical electrostatic interactions and reduction of entropic losses.

Ring 4 displays properties similar to those of Rings 2 and 5, yet it appears more “loose” judging from the average lifetime of the participating salt bridges (Table III).

Ring 5 is also stabilised by a network involving the hydrogen bond between C-terminal carboxyl groups and the hydroxyl groups of Tyr55. In contrast to the network of Ring 3, here the configurations (LysX56)COO$^-$–HOη(TyrY55)–NζH$_3^+$ (LysX56) remain stable with lifetime of at least 85% (see Table III). As illustrated in Fig. 7, the hydrogen bonds (Lys56)COO$^-$···HOη(Tyr55) are intrahelical and are expected to contribute to the stabilisation of the bundle in this region. Due to this, we consider them formally as a separate ring (Ring 6).

The overview of the rings of interhelical salt bridges suggests that they should play an important role in the stabilisation of the native three-dimensional structure of Lpp-56. Based on this, we hypothesise that the long life time of the prevailing majority of interhelical salt bridges contributes for structural stability of Lpp-56 as well as for its low unfolding rate.

Assume for simplicity that the protein unfolding is initiated by the disruption of the salt bridge rings. We consider a ring as broken if at least two interhelical salt bridges within this ring are simultaneously disrupted. This assumption reflects the properties of quasi-symmetric, non-covalent homotrimers, where dissociation of one monomer requires simultaneous disruption of two sets of quasi-symmetric interactions. Two salt bridges being disrupted, one of the helices in the region of a given ring could more easily move away from the other two. The hydrophobic packing is weaken (leading to enthalpic destabilisation), the mobility of groups increases (making the molecule more sensitive to thermal fluctuations), the hydrophobic core becomes partially hydrated. These effects promote non-native conformations. Such conformations may be stabilised and may propagate if the neighbouring ring is broken, otherwise the native conformation is stabilised. Since unfolding is coupled to chain dissociation, according to this scenario, a successful attempt for unfolding occurs if all salt bridge rings breaks simultaneously. The probability a ring, i, to be disrupted can be calculated by

$$p_i = p_{AC} p_{BA} p_{CB} + p_{AC} p_{BA} p_{CB} + p_{AC} p_{BA} p_{CB} + p_{AC} p_{BA} p_{CB},$$

where p_{XY} is the probability a cross-link (an interhelical salt bridge) between helix X and helix Y to exist. The probability p_{XY} is the parameter p (given in Table III)
calculated as the ratio between the lifetime of a salt bridge connecting helices X and Y and the total time of simulation. The probability a cross-link between helix X and helix Y to be disrupted is then \(p_{XY} = 1 - p_{XY} \). Eq. (8) comprises of the sum of the probability all salt bridges in a ring to be disrupted (the first term on its right hand side) and the probabilities one salt bridge (\(p_{AC} \) or \(p_{BA} \) or \(p_{CB} \)) to be intact whilst the other two are disrupted. The equation is valid if the events XY are independent. Since we have not found any correlation between the breaking and formation of the salt bridges within the rings, the above condition can be considered as fulfilled. The probability all rings to be disrupted simultaneously, i.e. the probability of a successful attempt for unfolding, is then

\[
p_{unf} = \prod_{i=1}^{6} p_i = 2.0 \times 10^{-11}.
\]

One can consider the process of unfolding as a series of events (independent or related), which stabilise non-native conformations. The unfolding rate will be then limited by the events with lower probability. In this context, we relate the extremely low value of the probability \(p_{unf} \) with the likewise low unfolding rate constant measured for Lpp-56. This correlation may be misleading if the pool of snapshot structures used for the calculations does not contain all relevant conformations that the protein can adopt at the chosen conditions. An evidence that the collected structures are representative is the good agreement between the calculated change of the electrostatic free energy with pH, \(\Delta \Delta G_{el}^{MD}(\text{pH3} \rightarrow \text{pH7}) \), and the experimentally observed \(\Delta \Delta G_{ther}^{ther}(\text{pH3} \rightarrow \text{pH7}) \). An additional indirect evidence is the value of \(p_{unf} \) calculated for the GCN4 leucine zipper. This protein has a spatial organisation similar to that of Lpp-56, although it consists of two, instead of three \(\alpha \)-helices. The lifetimes of the interhelical salt bridges in GCN4, grouped in rings by analogy with Lpp-56, are listed in Table IV. To maintain the assumptions as close as possible to those made for Lpp-56, a ring is considered as disrupted, if it consists of only one interhelical salt bridge. The probability of such an event is then

\[
p_i = 1 - p_{BA} p_{BA}
\]

and \(p_{unf} = \prod p_i = 0.79 \). The probabilities \(p_{AB} \) and \(p_{BA} \) correspond to symmetric salt bridges connecting the two helices of GCN4, however their values are different (Table
IV) because of the independent side chains movement of the two helices. If we assume that a ring breaks when both salt bridges are disrupted

\[p_i = p_{BA}^B p_{BA} \]

and \(p_{unf} = 0.12 \). The values of \(p_{unf} \) calculated for GCN4 are essentially larger than that calculated for Lpp-56. If we relate the probabilities for successful unfolding of the two proteins with their unfolding rate constants, it follows from the \(p_{unf}^{GCN4} / p_{unf}^{Lpp} \) ratio that GCN4 unfolds \(3.9 \times 10^{10} \) to \(5.9 \times 10^9 \) faster than Lpp-56. Unfortunately, a direct comparison with the actual unfolding constants is not possible, since the unfolding constant of Lpp-56 is not precisely known. However, it is \(< 1 \times 10^{-11} \) s\(^{-1}\). Since the unfolding rate constant of GCN4 is \(\sim 2 \times 10^{-2} \) s\(^{-1}\), the ratio of the experimentally measured rate constants is \(k_{unf}^{GCN4} / k_{unf}^{Lpp} > 2 \times 10^9 \). Based on the good agreement between our prediction and experiment observation, we conclude that the enormous low unfolding rate of Lpp-56 is essentially related to electrostatic interactions, and in particular, to the stability of the salt bridges.

It appears that the simple assumption underlying the model capture important features of Lpp-56 (and probably other coiled coils). The careful thermodynamic analysis of Dragan et al.\(^5\) led the authors describe the Lpp-56 unfolding transition state as native-like, that is “…the helices forming this coiled coil are still not sufficiently separated...yet at this stage extensive disruption of some short-range enthalpic interactions takes place... “. Furthermore, they analyse the activation enthalpy and entropy of unfolding and conclude: “It appears, thus that unfolding of the rigid three-stranded coiled coil starts from the simultaneous disruption of all van der Waals contacts between the strands, and since the probability of that is low, the process is slow. “ Such a picture is fully complementary to the basic assumptions of the presented model. It appears that the long-living salt bridges, which are staggered along the rod-like molecule, effectively prevent propagation of local unfolding events. Since it is believed that end-fraying is a factor destabilising coiled coils, of special interest is the fact that the C-terminus of the molecule is tightly constrained through electrostatic interactions within rings 5 and 6.

Finally, we would like to add that also in other proteins salt bridges which cross-link secondary structure elements, or are present at the interface of sub-units might provide a source of kinetic stabilisation, possibly by reducing the activation entropy for unfolding, thus increasing the activation energy for unfolding.\(^60,61\) It should be noted,
however, that the stabilising effect of the salt bridge charge-charge interactions is a consequence of the dynamic properties of the groups involved. These properties are, on the other hand, determined by the dynamic properties of the environment, which may or may not tolerate conformational freedom of the charged side chains, in this way regulating the salt bridge lifetime. In general, this feature cannot be recognised from a single, say crystal, protein structure. In this context, the combination of MD-based analysis and pK calculations might serve as a useful guide for experimentalists in mutation-based approaches.

Acknowledgments

The molecular dynamics simulations were performed on the Matterhorn Beowulf cluster at the Informatikdienste of the University of Zurich. The authors thank C. Bollinger, Dr. T. Steenbock, and Dr. A. Godknecht for setting up and maintaining the cluster. This work was supported by the Swiss National Science Foundation (Grant No. 3100A0-100197 to IJ).
REFERENCES

Table I Values of pK_{mod} and pK of Lpp-56 calculated for I=0.12. The individual helices are designated by A, B, and C.

<table>
<thead>
<tr>
<th>Group</th>
<th>pK_{mod} a</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-term</td>
<td>8.2 b</td>
<td>8.0</td>
<td>7.2</td>
<td>8.0</td>
<td>7.8</td>
</tr>
<tr>
<td>Asp07</td>
<td>4.0</td>
<td>2.0</td>
<td>2.8</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Asp12</td>
<td>3.5</td>
<td>3.4</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Asp21</td>
<td>3.3</td>
<td>3.2</td>
<td>3.2</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Asp26</td>
<td>−1.9</td>
<td>−4.8</td>
<td>−3.7</td>
<td>−3.4</td>
<td></td>
</tr>
<tr>
<td>Asp33</td>
<td>0.8</td>
<td>1.8</td>
<td>1.5</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Asp39</td>
<td>2.6</td>
<td>3.5</td>
<td>0.2</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Asp40</td>
<td>2.4</td>
<td>1.8</td>
<td>3.8</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Asp49</td>
<td>2.5</td>
<td>2.6</td>
<td>0.8</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Tyr55</td>
<td>9.4</td>
<td>16.1</td>
<td>15.9</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Lys05</td>
<td>10.4</td>
<td>10.3</td>
<td>10.3</td>
<td>10.1</td>
<td>10.2</td>
</tr>
<tr>
<td>Lys19</td>
<td>10.6</td>
<td>10.2</td>
<td>10.7</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Lys38</td>
<td>13.9</td>
<td>13.1</td>
<td>13.1</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>Lys54</td>
<td>13.0</td>
<td>12.8</td>
<td>13.2</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>Arg31</td>
<td>12.0</td>
<td>16.6</td>
<td>13.9</td>
<td>16.2</td>
<td>15.6</td>
</tr>
<tr>
<td>Arg43</td>
<td>14.4</td>
<td>12.9</td>
<td>14.0</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td>Arg47</td>
<td>13.9</td>
<td>16.5</td>
<td>14.1</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>Arg56</td>
<td>12.5</td>
<td>12.6</td>
<td>12.5</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>C-ter, c</td>
<td>3.6</td>
<td>−3.8</td>
<td>−2.9</td>
<td>−3.0</td>
<td>−3.2</td>
</tr>
</tbody>
</table>

a Values taken from Refs. 9,62

b pK of glycine amide

(www.science.smith.edu/departments/Biochem/Biochem_353/Common_Buffers.htm)

c pK of N-acetyl glycine 63
Table II Comparison of the pK values of the titratable groups of Lpp-56 (I=0.12) calculated on the basis of the X-ray structure (pK_{X-ray}), averaged over the structures collected by MD simulation (pK_{MD}) and of unfolded state of the protein (pK_{U}).

<table>
<thead>
<tr>
<th>Group</th>
<th>pK_{X-ray}</th>
<th>pK_{MD}</th>
<th>pK_{U}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-term</td>
<td>9.5</td>
<td>7.8</td>
<td>8.6</td>
</tr>
<tr>
<td>Asp07</td>
<td>1.6</td>
<td>2.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Asp12</td>
<td>5.3</td>
<td>3.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Asp21</td>
<td>2.2</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Asp26</td>
<td>2.2</td>
<td>−3.4</td>
<td>3.7</td>
</tr>
<tr>
<td>Asp33</td>
<td>3.6</td>
<td>1.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Asp39</td>
<td>3.4</td>
<td>2.1</td>
<td>3.6</td>
</tr>
<tr>
<td>Asp40</td>
<td>0.8</td>
<td>2.7</td>
<td>3.6</td>
</tr>
<tr>
<td>Asp49</td>
<td>1.2</td>
<td>2.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Tyr55</td>
<td>13.3</td>
<td>16.0</td>
<td>9.5</td>
</tr>
<tr>
<td>Lys05</td>
<td>10.1</td>
<td>10.2</td>
<td>10.8</td>
</tr>
<tr>
<td>Lys19</td>
<td>11.0</td>
<td>10.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Lys38</td>
<td>8.8</td>
<td>13.4</td>
<td>10.9</td>
</tr>
<tr>
<td>Lys54</td>
<td>10.4</td>
<td>13.0</td>
<td>10.8</td>
</tr>
<tr>
<td>Arg31</td>
<td>12.2</td>
<td>15.6</td>
<td>12.7</td>
</tr>
<tr>
<td>Arg43</td>
<td>13.7</td>
<td>13.8</td>
<td>12.7</td>
</tr>
<tr>
<td>Arg47</td>
<td>16.1</td>
<td>14.8</td>
<td>12.7</td>
</tr>
<tr>
<td>Arg56</td>
<td>113.0</td>
<td>12.5</td>
<td>12.6</td>
</tr>
<tr>
<td>C-term</td>
<td>3.8</td>
<td>−3.2</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Table III Interhelical salt bridges in Lpp-56. The parameter p is the ratio between the lifetime of a salt bridge and the total time (7 ns) of the MD simulation used to collect snapshot structures.

<table>
<thead>
<tr>
<th>Ring 1</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp21A — Lys19C</td>
<td>0.02</td>
</tr>
<tr>
<td>Asp21B — Lys19A</td>
<td>0.01</td>
</tr>
<tr>
<td>Asp21C — Lys19B</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ring 2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArgA31 — AspC26</td>
<td>1</td>
</tr>
<tr>
<td>ArgB31 — AspA26</td>
<td>0.98</td>
</tr>
<tr>
<td>ArgC31 — AspB26</td>
<td>0.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ring 3-cluster</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AspA33 — LysB38</td>
<td>0.90</td>
</tr>
<tr>
<td>AspA40</td>
<td></td>
</tr>
<tr>
<td>AspA39</td>
<td></td>
</tr>
<tr>
<td>AspB33</td>
<td></td>
</tr>
<tr>
<td>LysC38</td>
<td>0.79</td>
</tr>
<tr>
<td>ArgB43 — AspB40</td>
<td></td>
</tr>
<tr>
<td>AspB39</td>
<td></td>
</tr>
<tr>
<td>AspC33</td>
<td></td>
</tr>
<tr>
<td>AspC40 — LysA38</td>
<td>0.95</td>
</tr>
<tr>
<td>AspC39</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ring 4</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AspA49 — ArgC47</td>
<td>0.52</td>
</tr>
<tr>
<td>AspB49 — ArgA47</td>
<td>0.35</td>
</tr>
<tr>
<td>AspC49 — ArgB47</td>
<td>0.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ring 5</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CtrA56 — LysC54</td>
<td>0.95</td>
</tr>
<tr>
<td>CtrB56 — LysA54</td>
<td>0.89</td>
</tr>
<tr>
<td>CtrC56 — LysB54</td>
<td>0.85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ring 6</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CtrA56 — TyrC55</td>
<td>0.99</td>
</tr>
<tr>
<td>CtrB56 — TyrA55</td>
<td>0.99</td>
</tr>
<tr>
<td>CtrC56 — TyrB55</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Table IV Interhelical salt bridges in GCN4 leucine zipper. The parameter p is described in the legend of Table III

<table>
<thead>
<tr>
<th></th>
<th>Ring 1</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>LysA15 — GluB20</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>LysB15 — GluA20</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ring 2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>GluA22 — LysB27</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>GluB22 — LysA27</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ring 3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArgA25 — CtrB31</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>ArgB25 — CtrA31</td>
<td>0.10</td>
<td></td>
</tr>
</tbody>
</table>
Legends to the figures

Figure 1 Titratable side chains in Lpp-56. The groups forming salt bridges are grouped in rings along the rod-like molecule (see also Table III). The description of the rings is given in some detail in section "Role of the salt bridges in unfolding kinetic of Lpp-56". In the shown orientation the N-terminus is on top. Image reproduced by VMD software.41

Figure 2 Salt bridge formation between the C/terminal carboxyl group (chain C) and Lys54 (chain B). Left ordinate: distances between the carboxyl oxygen atoms, (Oδ1+Oδ2)/2, and Ne of LysB54 (line). Right ordinate: snapshot pK values of the C-terminal carboxyl group (open circles), and time evolution of the average pK value of the C-terminal carboxyl group (line associated with the circles). The dashed arrows indicate the average pK when the carboxyl group does not form a salt bridge (upper arrow) and when salt bridge is formed (lower arrow).

Figure 3 The electrostatic free energy as a function of pH calculated on the basis of MD simulation (continuous line) and the X-ray structure (dashed line).

Figure 4 pH-Dependence of $\Delta^S \Delta G^{el}$ (right ordinate) and $\Delta^S \Delta G^{el}(pH)+\Delta G^{el}(F\rightarrow F^S)_\text{ref}$ (left ordinate). Insert: pH dependence of $\Delta G^{el}(F\rightarrow F^S)$ (continuous line) and $\Delta G^{el}(U\rightarrow U^S)$ (dashed line). The difference between these energies (Eq. (8)) gives $\Delta^S \Delta G^{el}$ (left ordinate).
Figure 5 Part of the salt bridge network in Ring 3 (Table III). Snapshots structure A: Salt bridge AspB33−LysC33. Snapshots structure B: Salt bridge AspB40−LysC33. Image reproduced using The PyMOL Executable Build, (2005) DeLano Scientific LLC, South San Francisco, CA, USA.

Figure 6 Lifetime of salt bridges AspB33−LysC38 (red line) and AspB40−LysC38 (black line). The distance plotted is between the average coordinates of the carboxyl oxygen atoms, (Oδ1+Oδ2)/2, of the aspartic acid and the Nζ atom of LysC38.

Figure 7 C-terminal Rings 5 and 6. Image reproduced using The PyMOL Executable Build, (2005) DeLano Scientific LLC, South San Francisco, CA, USA.
Bjelic et al.

FIGURE 1
Bjelic et al.

FIGURE 2
Bjelic et al.

FIGURE 3
Bjelic et al.

FIGURE 4
Bjelic et al.

FIGURE 5
Bjelic et al.

FIGURE 6
Bjelic et al.

FIGURE 7