Abstract
GABA(B) receptors belong to the family of G-protein-coupled receptors, which mediate slow inhibitory neurotransmission in the central nervous system. They are promising drug targets for a variety of neurological disorders and play important functions in regulating synaptic plasticity. Signaling strength is critically dependent on the availability of the receptors at the cell surface. Several distinct highly regulated trafficking mechanisms ensure the presence of adequate receptor numbers in the plasma membrane. The rate of exocytosis of newly synthesized receptors from the endoplasmic reticulum via the Golgi apparatus to the cell surface as well as the rates of their endocytosis and degradation determines the retention time of receptors at the cell surface. This chapter focuses on the recently emerged mechanisms of GABA(B) receptor exocytosis, endocytosis, recycling, and degradation.