Header

UZH-Logo

Maintenance Infos

Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid


Ruzicka, K; Strader, L C; Bailly, A; Yang, H; Blakeslee, J; Langowski, L; Nejedlá, E; Fujita, H; Itoh, H; Syono, K; Hejátko, J; Gray, W M; Martinoia, E; Geisler, M; Bartel, B; Murphy, A S; Friml, J (2010). Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 107(23):10749-10753.

Abstract

Differential distribution of the plant hormone auxin within tissues mediates a variety of developmental processes. Cellular auxin levels are determined by metabolic processes including synthesis, degradation, and (de)conjugation, as well as by auxin transport across the plasma membrane. Whereas transport of free auxins such as naturally occurring indole-3-acetic acid (IAA) is well characterized, little is known about the transport of auxin precursors and metabolites. Here, we identify a mutation in the ABCG37 gene of Arabidopsis that causes the polar auxin transport inhibitor sensitive1 (pis1) phenotype manifested by hypersensitivity to auxinic compounds. ABCG37 encodes the pleiotropic drug resistance transporter that transports a range of synthetic auxinic compounds as well as the endogenous auxin precursor indole-3-butyric acid (IBA), but not free IAA. ABCG37 and its homolog ABCG36 act redundantly at outermost root plasma membranes and, unlike established IAA transporters from the PIN and ABCB families, transport IBA out of the cells. Our findings explore possible novel modes of regulating auxin homeostasis and plant development by means of directional transport of the auxin precursor IBA and presumably also other auxin metabolites.

Abstract

Differential distribution of the plant hormone auxin within tissues mediates a variety of developmental processes. Cellular auxin levels are determined by metabolic processes including synthesis, degradation, and (de)conjugation, as well as by auxin transport across the plasma membrane. Whereas transport of free auxins such as naturally occurring indole-3-acetic acid (IAA) is well characterized, little is known about the transport of auxin precursors and metabolites. Here, we identify a mutation in the ABCG37 gene of Arabidopsis that causes the polar auxin transport inhibitor sensitive1 (pis1) phenotype manifested by hypersensitivity to auxinic compounds. ABCG37 encodes the pleiotropic drug resistance transporter that transports a range of synthetic auxinic compounds as well as the endogenous auxin precursor indole-3-butyric acid (IBA), but not free IAA. ABCG37 and its homolog ABCG36 act redundantly at outermost root plasma membranes and, unlike established IAA transporters from the PIN and ABCB families, transport IBA out of the cells. Our findings explore possible novel modes of regulating auxin homeostasis and plant development by means of directional transport of the auxin precursor IBA and presumably also other auxin metabolites.

Statistics

Citations

Dimensions.ai Metrics
149 citations in Web of Science®
142 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

122 downloads since deposited on 08 Jan 2011
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:2010
Deposited On:08 Jan 2011 12:55
Last Modified:28 Jun 2022 11:40
Publisher:National Academy of Sciences
ISSN:0027-8424
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.1005878107
PubMed ID:20498067
  • Content: Accepted Version