Header

UZH-Logo

Maintenance Infos

Topology and geometry of stable map spaces


López Martín, Alberto. Topology and geometry of stable map spaces. 2010, University of Zurich, Faculty of Science.

Abstract

Algebraic stacks were introduced as a solution to the construction of moduli spaces in situations where the theories of varieties and schemes were not good enough. This thesis tackles three different projects concerning the topology and geometry of moduli stacks. In the first chapter of this thesis, we study the enumerative significance of genus-zero Gromov-Witten invariants with a Grassmannian target in terms of rational curves in the Grassmannian. The second of the projects in this thesis is the computation of the Betti numbers of the spaces M 0,0 (G(k, n), d) for d = 2, 3, with G(k, n) the Grassmannian parametrizing k-dimensional vector spaces in V = Cn. The last project in this thesis compares the virtual fundamental classes (introduced by Behrend and Fantechi) of the stack of (g, β, µ)-stable ramified maps log Ug,µ (X, β) and of the stack of (g, β, µ)-log stable ramified maps Ug,µ (X, β), constructed using the machinery described by Kim.

Algebraische Stacks sind als Lösung für die Konstruktion von Modulräumen eingeführt worden, wo Varietäten und Schemata nicht ausreichten. Diese Arbeit besteht aus drei verschiedenen Projekten zur Topologie und Geometrie von algebraischen Stacks. Im ersten Kapitel der Arbeit geht es um Gromov-Witten-Invarianten von Kurven des Geschlechts Null in der Grassmannschen. Wir analisieren ihre enumer- ative Bedeutung bezüglich rationaler Kurven in der Grassmannschen. Der zweite Teil handelt von der Berechnung der Betti-Zahlen der Räume M 0,0 (G(k, n), d) für d = 2, 3, wobei G(k, n) die Grassmannsche ist, welche die ∼ k-dimensionale Untervektorräume in V = Cn parametrisiert. Schliesslich vergleichen wir die virtuellen Fundamentalklassen (eingeführt von Behrend und Fantechi) des Stacks von (g, β, µ)-stabilen verzweigten Abbil- dungen Ug,µ (X, β) und des Stacks von (g, β, µ)-log-stabilen verzweigten Abbillog dungen Ug,µ (X, β), die wie in [Kim] beschrieben konstruiert worden sind.

Abstract

Algebraic stacks were introduced as a solution to the construction of moduli spaces in situations where the theories of varieties and schemes were not good enough. This thesis tackles three different projects concerning the topology and geometry of moduli stacks. In the first chapter of this thesis, we study the enumerative significance of genus-zero Gromov-Witten invariants with a Grassmannian target in terms of rational curves in the Grassmannian. The second of the projects in this thesis is the computation of the Betti numbers of the spaces M 0,0 (G(k, n), d) for d = 2, 3, with G(k, n) the Grassmannian parametrizing k-dimensional vector spaces in V = Cn. The last project in this thesis compares the virtual fundamental classes (introduced by Behrend and Fantechi) of the stack of (g, β, µ)-stable ramified maps log Ug,µ (X, β) and of the stack of (g, β, µ)-log stable ramified maps Ug,µ (X, β), constructed using the machinery described by Kim.

Algebraische Stacks sind als Lösung für die Konstruktion von Modulräumen eingeführt worden, wo Varietäten und Schemata nicht ausreichten. Diese Arbeit besteht aus drei verschiedenen Projekten zur Topologie und Geometrie von algebraischen Stacks. Im ersten Kapitel der Arbeit geht es um Gromov-Witten-Invarianten von Kurven des Geschlechts Null in der Grassmannschen. Wir analisieren ihre enumer- ative Bedeutung bezüglich rationaler Kurven in der Grassmannschen. Der zweite Teil handelt von der Berechnung der Betti-Zahlen der Räume M 0,0 (G(k, n), d) für d = 2, 3, wobei G(k, n) die Grassmannsche ist, welche die ∼ k-dimensionale Untervektorräume in V = Cn parametrisiert. Schliesslich vergleichen wir die virtuellen Fundamentalklassen (eingeführt von Behrend und Fantechi) des Stacks von (g, β, µ)-stabilen verzweigten Abbil- dungen Ug,µ (X, β) und des Stacks von (g, β, µ)-log-stabilen verzweigten Abbillog dungen Ug,µ (X, β), die wie in [Kim] beschrieben konstruiert worden sind.

Statistics

Downloads

217 downloads since deposited on 23 Dec 2010
32 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Dissertation (monographical)
Referees:Kresch Andrew, Rosenthal J, Fantechi Barbara
Communities & Collections:07 Faculty of Science > Institute of Mathematics
UZH Dissertations
Dewey Decimal Classification:510 Mathematics
Language:English
Place of Publication:Zürich
Date:2010
Deposited On:23 Dec 2010 16:08
Last Modified:15 Apr 2021 14:09
Publisher:s.n.
Number of Pages:30
OA Status:Green

Download

Green Open Access

Download PDF  'Topology and geometry of stable map spaces'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 269kB