Header

UZH-Logo

Maintenance Infos

High power-pulsed Nd:YAG laser as a new stimulus to induce BMP-2 expression in MC3T3-E1 osteoblasts


Kim, I S; Cho, T H; Kim, K; Weber, Franz E; Hwang, S J (2010). High power-pulsed Nd:YAG laser as a new stimulus to induce BMP-2 expression in MC3T3-E1 osteoblasts. Lasers in Surgery and Medicine, 42(6):510-518.

Abstract

BACKGROUND AND OBJECTIVE: High-power laser has recently become a physical stimulus for bone regeneration. Little is known about how high-power laser irradiation affects osteoblast differentiation. This study investigated osteoblast responses to high-power laser and combined irradiation with BMP-2 treatment.

STUDY DESIGN/MATERIALS AND METHODS: MC3T3-E1 pre-osteoblasts were exposed to laser irradiation, 100 ng/ml BMP-2 or both. Cells were irradiated with a Q-switched, pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser, with a 1,064 nm wavelength and 0.75 W output power under 1.5, 3, or 5 J/cm(2) energy densities. Cell proliferation was evaluated using tetrazolium salt, WST-8. To determine the effect of these treatments on in vitro osteogenesis, we examined alkaline phosphatase (ALP) activity, mineral deposition, and expression of genes associated with osteogenesis. Quantitative real time PCR or ELISA was used to examine cytokine expression. In each experiment, either non-irradiated or BMP-2 (100 ng/ml)-treated cells were used as controls.

RESULTS: High-power, low-level, Nd:YAG laser irradiation significantly increased ALP activity, when combined with BMP-2 or not. Cell proliferation declined in the irradiation and combined irradiation/BMP-2 groups. Interestingly, Nd:YAG laser stimulation resulted in significant induction of endogenous BMP-2 protein and gene expression. The increased expression of upstream regulators cbfa1 by Nd:YAG laser alone was comparable to exogenous BMP-2 treatment (100 ng/ml). Combined laser/BMP-2 treatment was synergistic in the expression of some genes (IGF-1, cbfa1) and ALP activity, compared to both BMP-2 treatment and laser irradiation alone. In vitro matrix mineralization was significantly accelerated by laser stimulation compared to that of the control, more so than with the combined laser/BMP-2 treatment.

CONCLUSIONS: The present in vitro findings demonstrate that high-power, low-level Nd:YAG laser increased osteoblast activity, very efficiently accelerating mineral deposition. Osteoinductive effect of laser is likely mediated by activation of BMP-2-related signaling pathway.

Abstract

BACKGROUND AND OBJECTIVE: High-power laser has recently become a physical stimulus for bone regeneration. Little is known about how high-power laser irradiation affects osteoblast differentiation. This study investigated osteoblast responses to high-power laser and combined irradiation with BMP-2 treatment.

STUDY DESIGN/MATERIALS AND METHODS: MC3T3-E1 pre-osteoblasts were exposed to laser irradiation, 100 ng/ml BMP-2 or both. Cells were irradiated with a Q-switched, pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser, with a 1,064 nm wavelength and 0.75 W output power under 1.5, 3, or 5 J/cm(2) energy densities. Cell proliferation was evaluated using tetrazolium salt, WST-8. To determine the effect of these treatments on in vitro osteogenesis, we examined alkaline phosphatase (ALP) activity, mineral deposition, and expression of genes associated with osteogenesis. Quantitative real time PCR or ELISA was used to examine cytokine expression. In each experiment, either non-irradiated or BMP-2 (100 ng/ml)-treated cells were used as controls.

RESULTS: High-power, low-level, Nd:YAG laser irradiation significantly increased ALP activity, when combined with BMP-2 or not. Cell proliferation declined in the irradiation and combined irradiation/BMP-2 groups. Interestingly, Nd:YAG laser stimulation resulted in significant induction of endogenous BMP-2 protein and gene expression. The increased expression of upstream regulators cbfa1 by Nd:YAG laser alone was comparable to exogenous BMP-2 treatment (100 ng/ml). Combined laser/BMP-2 treatment was synergistic in the expression of some genes (IGF-1, cbfa1) and ALP activity, compared to both BMP-2 treatment and laser irradiation alone. In vitro matrix mineralization was significantly accelerated by laser stimulation compared to that of the control, more so than with the combined laser/BMP-2 treatment.

CONCLUSIONS: The present in vitro findings demonstrate that high-power, low-level Nd:YAG laser increased osteoblast activity, very efficiently accelerating mineral deposition. Osteoinductive effect of laser is likely mediated by activation of BMP-2-related signaling pathway.

Statistics

Citations

Dimensions.ai Metrics
19 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

248 downloads since deposited on 05 Jan 2011
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Cranio-Maxillofacial Surgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Surgery
Health Sciences > Dermatology
Language:English
Date:2010
Deposited On:05 Jan 2011 13:21
Last Modified:23 Jan 2022 17:33
Publisher:Wiley-Blackwell
ISSN:0196-8092
Additional Information:The definitive version is available at www.blackwell-synergy.com
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/lsm.20870
PubMed ID:20127830
  • Content: Accepted Version