Header

UZH-Logo

Maintenance Infos

Janzen-Connell effects are widespread and strong enough to maintain diversity in grassland


Petermann, J S; Fergus, A J F; Turnbull, L A; Schmid, B (2008). Janzen-Connell effects are widespread and strong enough to maintain diversity in grassland. Ecology, 89(9):2399-2406.

Abstract

Crop rotation schemes are believed to work by preventing specialist soil-borne pests from depressing the future yields of similar crops. In ecology, such negative plant-soil feedbacks may be viewed as a type of Janzen-Connell effect, which promotes species coexistence and diversity by preventing the same species from repeatedly occupying a particular site. In a controlled greenhouse experiment with 24 plant species and using soils from established field monocultures, we reveal community-wide soil-based Janzen-Connell effects between the three major functional groups of plants in temperate European grasslands. The effects are much stronger and more prevalent if plants are grown in interspecific competition. Using several soil treatments (gamma irradiation, activated carbon, fungicide, fertilizer) we show that the mechanism of the negative feedback is the buildup of soil pathogens which reduce the competitive ability of nearly all species when grown on soils they have formerly occupied. We further show that the magnitude of the change in competitive outcome is sufficient to stabilize observed fitness differences between functional groups in reasonably large communities. The generality and strength of this negative feedback suggests that Janzen-Connell effects have been underestimated as drivers of plant diversity in temperate ecosystems.

Abstract

Crop rotation schemes are believed to work by preventing specialist soil-borne pests from depressing the future yields of similar crops. In ecology, such negative plant-soil feedbacks may be viewed as a type of Janzen-Connell effect, which promotes species coexistence and diversity by preventing the same species from repeatedly occupying a particular site. In a controlled greenhouse experiment with 24 plant species and using soils from established field monocultures, we reveal community-wide soil-based Janzen-Connell effects between the three major functional groups of plants in temperate European grasslands. The effects are much stronger and more prevalent if plants are grown in interspecific competition. Using several soil treatments (gamma irradiation, activated carbon, fungicide, fertilizer) we show that the mechanism of the negative feedback is the buildup of soil pathogens which reduce the competitive ability of nearly all species when grown on soils they have formerly occupied. We further show that the magnitude of the change in competitive outcome is sufficient to stabilize observed fitness differences between functional groups in reasonably large communities. The generality and strength of this negative feedback suggests that Janzen-Connell effects have been underestimated as drivers of plant diversity in temperate ecosystems.

Statistics

Citations

Dimensions.ai Metrics
334 citations in Web of Science®
345 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

556 downloads since deposited on 09 Oct 2008
77 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Language:English
Date:2008
Deposited On:09 Oct 2008 14:47
Last Modified:20 Jun 2023 12:58
Publisher:Ecological Society of America
ISSN:0012-9658
Additional Information:Copyright by the Ecological Society of America
OA Status:Green
Publisher DOI:https://doi.org/10.1890/07-2056.1
Official URL:http://www.esajournals.org/doi/pdf/10.1890/07-2056.1
PubMed ID:18831160
  • Content: Published Version
  • Language: English