
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2010

SOFAS: Software Analysis Services

Ghezzi, G

DOI: https://doi.org/10.1145/1810295.1810398

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-42659
Conference or Workshop Item

Originally published at:
Ghezzi, G (2010). SOFAS: Software Analysis Services. In: 32nd ACM/IEEE International Conference on Software
Engineering, Cape Town, South Africa, 2 May 2010 - 8 May 2010, 381-384.
DOI: https://doi.org/10.1145/1810295.1810398

SOFAS - SOFtware Analysis Services

[Extended Abstract]

Giacomo Ghezzi
University of Zurich, Institute for Informatics

Binzmuhlestrasse 14
8050, Zurich, Switzerland

http://seal.ifi.uzh.ch/ghezzi/

ghezzi@ifi.uzh.ch

ABSTRACT

We propose a distributed and collaborative software analy-
sis platform to enable seamless interoperability of software
analysis tools across platform, geographical and organiza-
tional boundaries. In particular, we devise software analysis
tools as services that can be accessed and composed over the
Internet. These distributed services shall be widely accessi-
ble through a software analysis broker where organizations
and research groups can register and share their tools. To
enable (semi)-automatic use and composition of these tools,
they will be classified and mapped into a software analysis
taxonomy and adhere to specific meta-models and ontologies
for their category of analysis. We claim that moving software
analysis ”outside the lab and into the Web” is highly bene-
ficial from many point of views. Simple, common analyses
can be effortlessly combined together into much meaningful,
complex and novel ones. Analyses can be run everywhere
and anytime without the need to install several tools and to
cope with many output formats. Empirical studies can be
easily replicated. At last, we claim that this will greatly help
in the maturing of the field and boost its role in supporting
software development practices

1. MOTIVATION
Successful software systems must continuously change or

they become progressively less useful. However, these modi-
fications lead to a slow but continuous increase in complexity
and deterioration in quality and usability, known as Entropy
or “software rot”. The continuous changes, so important for
the success of a software, are thus also the main causes of its
dismissal. Therefore, as a software evolves, more and more
resources are needed to preserve and simplify their struc-
ture. Having an always up to date and thorough view of
a software system greatly helps in avoiding this problem—
or at least keeping it under control. Historical data stored
into repositories by systems such as version control, bug and
issue tracking, mailing lists, etc. is crucial for that pur-
pose. Studies using this data to analyze various aspects of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

software development (e.g. software design/architecture, de-
velopment process and dynamics, etc.), have emerged and
flourished only in the last decade. These studies have high-
lighted the value of collecting and analyzing this data. Yet,
each of these studies has built its own methodologies and
tools to extract, organize and utilize such data to perform
their research. This means that, for every required analysis,
a specialized tool, with its own explicit or implicit meta-
model dictating how to represent the input and the output,
has to be installed, configured and executed. Thus the shar-
ing of information between tools is only possible by means of
a cumbersome export towards files complying to a specified
exchange format. Even if different analyses of the same kind
exist (e.g. code duplication analysis), there is no way to com-
pare their results or integrate them other than with manual
investigation. Tool interoperability is hampered even more
by their stand-alone nature, as well as their platform and
language dependence.

Therefore, despite this richness, the field still lacks of ways
to effectively and systematically share, integrate and study
data coming from different analyses when we need to gain a
deeper insight into a software system’s evolution.

2. THE SOFAS APPROACH
Our vision is to tackle the problem by devising a dis-

tributed and collaborative software analysis platform to allow
for interoperability of software analysis tools across platform,
geographical and organizational boundaries. Such tools will
be mapped into a software analysis taxonomy and will ad-
here to specific meta-models and ontologies for their cate-
gory of analysis and offer a common service interface that en-
ables their composite use on the Internet. These distributed
analysis services will be accessible through an incrementally
augmented catalog, where organizations and research groups
can register, share and compose their tools. To fulfill this
vision, three main research topics need to be tackled.

1. Analysis Web Services

These services need to be described, categorized and
kept track of in a consistent way in order to be effec-
tively used. Moreover it should be possible to (semi)-
automatically composed them to provide higher-level
services or complex analysis workflows.

2. Knowledge sharing and usage

The different kinds of software analysis data need to
be defined and structured in a homogeneous and con-
sistent way (something which the field still lacks). In
this way, information coming from different analyses
can be easily composed and integrated. This is crucial

to allow more advanced and complex analysis work-
flows and thus substantially enrich the body of knowl-
edge about a software system. At last, to really take
advantage of all this wide-ranged body of knowledge,
query languages and facilities are needed.

3. Added Value

Tools and platforms aimed at supporting Software Evo-
lution Analysis already exist. However, as we have
seen, many issues are still open. We need to prove
that our approach helps in solving them and that its
advantages and the novelty set it apart from the exist-
ing solutions.

The research aimed to solve these challenges can be split
into three main bodies of work, corresponding to major con-
tributions:

1. Distributed Software Analysis Architecture

The goal is to build services for several existing soft-
ware analysis tools (starting with the ones developed
in our research group in the past years) and all the
supporting infrastructure to effectively track, use and
manage them. The idea of exposing software analy-
ses as web services and creating an online platform to
share them to overcome the known language and plat-
form barriers is novel and has not yet been proposed.
Moreover we claim that it can be highly beneficial for
the software analysis field as whole, as it offers a plat-
form to facilitate collaboration between different re-
search groups, it opens up analysis tools and data to
outside researchers from other fields and it can lead,
in the future, to an extensive online repository of data
extracted from OSS projects.This work is split in three
parts:

(a) Initial investigation: Study the state of the art
of software analysis and of the few existing similar
approaches. Test early ideas and investigate their
feasibility with early prototypes. Lay down the
first version of the overall solution.

(b) First architecture prototype: Based on the
initial investigation, develop a first complete, work-
ing prototype. This includes, picking the appro-
priate technologies and tools, creating software
analysis web services based on the analyses de-
veloped by our research group and create all the
rest of the infrastructure to effectively share, use
and manages these services.

(c) Stable architecture: With the lessons learned,
make the transition from a research prototype to a
stable and flexible application which will then be
released to the public. In this way external users
can start using it and give feedback and, ideally,
contribute by adding their own analyses. With
this version, users will be able to fetch, register,
use and combine services into predefined work-
flows.

2. Ontologies and Semantic Web

The goal is to provide an extensible corpus of ontolo-
gies to describe the data produced by the different
types of analyses and seamlessly integrate that into
our architecture. To do that, we plan to use the most
recent and up to date Semantic Web Technologies (e.g.
we use OWL as the ontology authoring language of

choice). Semantic Web is a rather new and emerging
technology and only a very few works investigated us-
ing it outside its breeding ground, the Web. In partic-
ular, the use of ontologies in software engineering and
software analysis has a big potential potential that has
not been exploited to its fullest yet. In fact, by using
OWL to describe and structure the data, we have both
a clear, univoque semantics and syntax by just using
one language. Moreover, query languages and reason-
ers already exist to easily extract and automatically
infer new additional data from an existing knowledge
base. This work is split in two parts:

(a) Development and refinement of ontologies

Develop an ontology to describe the data pro-
duced by each of the analysis service existing in
the platform.

(b) Integration Integration the created ontologies
into the architecture.

3. Analysis Services Description and Composition

In order for these services to be effectively used, a clear
mechanism to describe what they offer, how they offer
it and what they need as prerequisite information to
function is needed. We plan to develop a service de-
scription language by which these analysis services can
not only be described, but also (semi)-automatically
composed in real-time into higher-level services based
on their semantics and on what they offer. To do that,
we are going to use the new W3C Semantic Annota-
tions for WSDL (SAWSDL) recommendation1, which
allows to add semantic annotations to WSDL compo-
nents and thus giving semantic meaning to the web
services themselves, their inputs and their outputs.
Apart from laying down the theoretical foundations
of this description language and of the software anal-
ysis composition, we intend to build the necessary in-
frastructure to actually allow users to easily compose
different services into workflows. Service composition
in general has been addressed in countless works, but
most of them dealt with the technicalities of it and
focused just on small or abstract toy examples. On
the other hand, our aim is to apply our service com-
position approach to software analysis, a real, existing
case that has never been associated to this field of re-
search. Moreover, we foresee that these services will
produce and exchange huge amounts of data, knowing
that it would be a real and challenging stress test for
the whole approach. At last, semantics-based service
composition is a new field of research and has not been
concretely studied yet, as semantic web services are a
totally new concept. This work can thus be divided in
three parts:

(a) Foundations of software analysis services

description Formalization of the language used
to describe software analysis services. This will
not consist in developing a new web service def-
inition language, but in the formalization of the
use of new a technology, SAWSDL, to effectively
describe web services.

(b) Foundations of semantics based service com-

position Formalization of the principles of se-
mantic based web service composition: how, based

1http://www.w3.org/TR/sawsdl/

on their semantically enhanced description, web
services can be (semi)-automatically composed.

(c) Support infrastructure and integration De-
velop the support infrastructure for the semantic
based service composition and integrate that into
our Distributed Software Analysis Architecture.

As final, concrete outcome, we envision a web portal where
people can share, compose and use each other’s tools. In
order to be effectively used both by human users and directly
by computers and third party applications, this portal will
be accessible through a series of human oriented rich web
applications and more machine-oriented access points.

3. RELATED WORK
Software analysis is one of the key activities in software

engineering as it allows to extract the most diverse and ex-
tensive information regarding a software system, e.g.for the
purpose of evolution analysis, reengineering, etc. The classic
analyses targeting models and source code have been around
for years. Only in the last years many research groups have
shifted their attention to software evolution and the whole
established community of reverse engineering, reengineering,
and program comprehension has actually acknowledged that
evolution is indeed the umbrella of their research activities.
There is a plethora of researches on these topics. However, a
report on the state of the art is out of the scope of this paper.
Approaches focusing on the software evolution either study
its source code change history [18, 16], bug history [14], its
underlying dynamics [1, 15] or a combination of them [3,
7]. However, all these approaches rely on their own ad-hoc
developed tools and techniques and none targeted the issue
of using and composing different, independent analyses.

Jin and Cordy [12] were so far the only researchers to
study software analysis integration. They propose an on-
tology based software analysis tool integration system that
employs a domain ontology and specifically constructed ex-
ternal tool adapters. They use a service-sharing methodol-
ogy that employs a common domain ontology defining the
conceptual space shared by the different tools and specially
constructed external tool adapters, that wrap the tools into
services. They also implemented a proof of concept with
three reverse engineering tools that allowed them to explore
service-sharing as a viable means for facilitating interoper-
ability among tools. We share with them the overall con-
cept, but at the same time, the two approaches have many
differences due to their partially distinct goals. In fact, the
objective of their integration effort was to be able to apply a
functionality/analysis available in one tool to the fact-base
of another one in a very simple way. For this reason, they
used a domain ontology just to describe the set of represen-
tational concepts that the different tools to be integrated
require and support. On the other hand, our goal is to offer
a much broader and versatile solution. In fact, we intend to
exploit ontologies on a much broader scale: to catalog and
describe the services, to represent and standardize their in-
put and output accordingly to the type of analysis offered,
to semantically link different results and to perform (semi)-
automatic reasoning on them.

The use of web services and semantic web technologies for
software analysis, and software engineering in general, has
only just recently been addressed in research by just a few
works. These works all have focused on providing ontologies
to representing software analysis data and concepts to foster

software reuse and maintenance. For example, generic soft-
ware engineering concepts (classes, tests, metrics, require-
ments, etc.) [11], higher level meta-data about software com-
ponents (e.g. the programming language, licensing models,
ownership and authorship data) [10]. More related to our
approach, Kiefer et al. [13], developed a software repository
data ontology including software, release and bug related
information based on based on Evolizer’s [7] data models.
However none of these models, are then used for concrete
software engineering tasks other than a small proof of con-
cept.

4. EVALUATION
We intend to incrementally validate the proposed approach

as major milestones are reached. More precisely, when each
of the three main work packages listed above is completed.
We claim that the most appropriate way to evaluate our
approach is to use a series of comparative case study-based
validations. In fact, the nature of the project makes other
possible evaluation techniques, such as empirical studies or
controlled user studies, unfeasible. On the other hand, with
comparative case studies we can test the usefulness of our
approach, how it performs against existing, state of the art
solutions and its novelty.

4.1 Distributed Software Analysis
The goal of this evaluation is to use case studies to com-

pare our approach with the related existing state of the art
solutions, show the novelty of it and how and why it helps
solving many of the problems of software analysis and soft-
ware evolution that motivated our work. As use case we
intend to compare how some given specific software analysis
tasks can be carried out with our approach, with OASIS [12],
the only similar existing approach, and with the use of sepa-
rate, independent, stand alone tools. The software analysis
tasks to be used could be manifold: they could be just the
“replay” of existing known software analysis empirical stud-
ies or totally novel studies.

4.2 Ontologies for Software Analysis
The goal of this evaluation is to show how and why ontolo-

gies are valuable in software engineering and in particular in
software analysis. The main focus of this validation will be
to show how using ontologies to represent and structure soft-
ware artifacts data brings a totally new perspective to the
field and helps overcome the problems of the existing ap-
proaches in software artifacts representation languages and
the associated query languages. This evaluation will show
how, combining the use of ontologies to represent software
data with querying tools like GINSENG [2], it is possible
to formulate, and have answers, to questions programmers
ask during software evolution tasks just by using natural
language. In particular we will use the questions that were
collected by Silito et al. [17]. Moreover we will compare our
approach with the most notable existing ones and in partic-
ular Ferret [5], the one closest to ours.

4.3 Software Analysis Services Description and
Composition

The goal of this last evaluation is to show that, with
our approach, it is possible to (semi)-automatically com-
pose simple, specific analyses into workflows representing
more high-level, complex ones. As for the previous evalu-
ations, the goal is to compare our approach with the cur-
rently existing solutions. The main focus will be to show

the advantages of our solution when, given a specific com-
plex software analysis task, several specific analyses (e.g.
revision history, issue tracking history, code metrics, etc.)
need to be combined. As for the Distributed Software Anal-
ysis evaluation, the complex software analysis tasks to be
used could be manifold. In this case study, our approach,
its performance and its results will be compared with the
closest existing approaches (such as Ferret [5], Evolizer [7],
etc.) and, again, with the use of separate, independent and
stand alone tools. This validation should be considered as a
natural follow up of the previous two.

5. PROGRESS
SOFAS’ basic conceptual framework has been introduced

in “Towards Software Analysis as a Service” [8]. In that
paper we introduced the concept of “Software Analysis as
a Service” and the need for it in the field. Moreover, we
sketched the overall architecture and the technologies to
use. All those ideas we further refined in the book chap-
ter titled “Distributed and Collaborative Software Analy-
sis” [9]. In that work, we focused more on how our ap-
proach can foster collaboration from the point of view of
users and of the analyses themselves. SEON [4], a cor-
pus of software engineering ontologies comprising a generic
project versioning history ontology (fitting the most com-
mon SCMs), Bugzilla and Trac issue tracking history on-
tologies and a static source code model ontology, largely
based on FAMIX [6], has been developed and published.
All the services of the Distributed Software Analysis Archi-
tecture previously reported were also modified so that they
structure the data produced accordingly to the associated
ontologies. At last, a work to support developers with nat-
ural language queries during program comprehension and
maintenance tasks is under way. This work will be used for
the evaluation proposed in Section 4.2.

The current main effort is to make SOFAS’ architecture
stable and flexible and integrate all the developed services
and ontologies. Moreover, the creation of a rich web inter-
face were users can compose the existing services into prede-
fined analysis workflows is under way. Once these goals are
reached, we will then focus on laying down the foundations
of semantics based software analysis services description and
composition.

6. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix

this bug? Proceedings of the 28th International
Conference on Software Engineering (ICSE 2006),
pages 361– 370, 2006.

[2] A. Bernstein, E. Kaufmann, C. Kaiser, and C. Kiefer.
Ginseng: A Guided Input Natural Language Search
Engine for Querying Ontologies. In 2006 Jena User
Conference, May 2006.

[3] J. Bevan, E. J. Whitehead, Jr., S. Kim, and
M. Godfrey. Facilitating software evolution research
with kenyon. In ESEC/SIGSOFT FSE, pages
177–186, New York, NY, USA, 2005. ACM.

[4] J. Bielik. Seon: Designing software engineering
ontologies. Master’s thesis, University of Zurich,
Department of Informatics, 2009.

[5] B. de Alwis and G. C. Murphy. Answering conceptual
queries with ferret. In ICSE ’08: Proceedings of the
30th international conference on Software engineering,
pages 21–30, New York, NY, USA, 2008. ACM.

[6] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1
- The FAMOOS Information Exchange Model.
Technical Report, 2001.

[7] H. C. Gall, B. Fluri, and M. Pinzger. Change Analysis
with Evolizer and ChangeDistiller. IEEE Software,
26(1):26–33, January/February 2009.

[8] G. Ghezzi and H. C. Gall. Towards software analysis
as a service. In Proceedings of the 4th International
ERCIM Workshop on Software Evolution and
Evolvability (Evol’08), L’Aquila, Italy, Sept 2008.
IEEE/ACM DL.

[9] G. Ghezzi and H. C. Gall. Distributed and
collaborative software analysis. In Collaborative
Software Engineering, chapter 12. Springer, 2010.

[10] H. Happel, A. Korthaus, S. Seedorf, and P. Tomczyk.
Kontor: An ontology-enabled approach to software
reuse. Proceedings of the 18th Int. Conf. on Software
Engineering and Knowledge Engineering (SEKE
2006), 2006.

[11] D. Hyland-Wood, D. Carrington, and S. Kaplan.
Toward a software maintenance methodology using
semantic web techniques. Proceedings of the 2nd
International IEEE Workshop on Software Evolvability
at IEEE International Conference on Software
Maintenance (ICSM 2006), pages 23–30, 2006.

[12] D. Jin and J. R. Cordy. Ontology-based software
analysis and reengineering tool integration: the oasis
service-sharing methodology. Proceedings of the 21st
IEEE International Conference on Software
Maintenance (ICSM 2005), pages 613–616, 2005.

[13] C. Kiefer, A. Bernstein, and J. Tappolet. Mining
software repositories with isparql and a software
evolution ontology. Proceedings of the 4th
International Workshop on Mining Software
Repositories (MSR 2007), 2007.

[14] S. Kim, T. Zimmermann, E. W. Jr., and A. Zeller.
Predicting faults from cached history. Proceedings of
the 29th international conference on Software
Engineering (ICSE 2007), pages 489–498, 2007.

[15] A. Mockus and J. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise.
Proceedings of the 24th International Conference on
Software Engineering (ICSE 2002), pages 503–512,
2002.

[16] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. Proceedings
of the 27th International Conference on Software
Engineering (ICSE 2005), pages 284–292, 2005.

[17] J. Sillito, G. C. Murphy, and K. D. Volder. Questions
programmers ask during software evolution tasks. In
SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of
software engineering, pages 23–34, New York, NY,
USA, 2006. ACM.

[18] T. Zimmermann, P. Weissgerber, S. Diehl, and
A. Zeller. Mining version history to guide software
changes. Proceedings of the 26th International
Conference on Software Engineering (ICSE 2004),
pages 563–572, 2004.

