Header

UZH-Logo

Maintenance Infos

Neurotrypsin cleaves agrin locally at the synapse.


Stephan, A; Mateos, J M; Kozlov, S V; Cinelli, P; Kistler, A D; Hettwer, S; Rülicke, T; Streit, P; Kunz, B; Sonderegger, P (2008). Neurotrypsin cleaves agrin locally at the synapse. FASEB Journal, 22(6):1861-73.

Abstract

The synaptic serine protease neurotrypsin is considered to be essential for the establishment and maintenance of cognitive brain functions, because humans lacking functional neurotrypsin suffer from severe mental retardation. Neurotrypsin cleaves agrin at two homologous sites, liberating a 90-kDa and a C-terminal 22-kDa fragment from the N-terminal moiety of agrin. Morphological analyses indicate that neurotrypsin is contained in presynaptic terminals and externalized in association with synaptic activity, while agrin is localized to the extracellular space at or in the vicinity of the synapse. Here, we present a detailed biochemical analysis of neurotrypsin-mediated agrin cleavage in the murine brain. In brain homogenates, we found that neurotrypsin exclusively cleaves glycanated variants of agrin. Studies with isolated synaptosomes obtained by subcellular fractionation from brains of wild-type and neurotrypsin-overexpressing mice revealed that neurotrypsin-dependent cleavage of agrin was concentrated at synapses, where the most heavily glycanated variants of agrin predominate. Because agrin has been shown to play an important role in the formation and the maintenance of excitatory synapses in the central nervous system, its local cleavage at the synapse implicates the neurotrypsin/agrin system in the regulation of adaptive reorganizations of the synaptic circuitry in the context of cognitive functions, such as learning and memory.

Abstract

The synaptic serine protease neurotrypsin is considered to be essential for the establishment and maintenance of cognitive brain functions, because humans lacking functional neurotrypsin suffer from severe mental retardation. Neurotrypsin cleaves agrin at two homologous sites, liberating a 90-kDa and a C-terminal 22-kDa fragment from the N-terminal moiety of agrin. Morphological analyses indicate that neurotrypsin is contained in presynaptic terminals and externalized in association with synaptic activity, while agrin is localized to the extracellular space at or in the vicinity of the synapse. Here, we present a detailed biochemical analysis of neurotrypsin-mediated agrin cleavage in the murine brain. In brain homogenates, we found that neurotrypsin exclusively cleaves glycanated variants of agrin. Studies with isolated synaptosomes obtained by subcellular fractionation from brains of wild-type and neurotrypsin-overexpressing mice revealed that neurotrypsin-dependent cleavage of agrin was concentrated at synapses, where the most heavily glycanated variants of agrin predominate. Because agrin has been shown to play an important role in the formation and the maintenance of excitatory synapses in the central nervous system, its local cleavage at the synapse implicates the neurotrypsin/agrin system in the regulation of adaptive reorganizations of the synaptic circuitry in the context of cognitive functions, such as learning and memory.

Statistics

Citations

Dimensions.ai Metrics
102 citations in Web of Science®
102 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 27 Oct 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry

04 Faculty of Medicine > Institute of Laboratory Animal Science
05 Vetsuisse Faculty > Institute of Laboratory Animal Science
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Biotechnology
Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Life Sciences > Genetics
Uncontrolled Keywords:extracellular proteolysis, mental retardation, cognitive function, synaptic, , plasticity, synaptosomes
Language:English
Date:June 2008
Deposited On:27 Oct 2008 09:09
Last Modified:01 Dec 2023 02:45
Publisher:Federation of American Societies for Experimental Biology
ISSN:0892-6638
OA Status:Closed
Publisher DOI:https://doi.org/10.1096/fj.07-100008
PubMed ID:18230682