Abstract
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae couples the exergonic oxidation of NADH by membrane-bound quinone to Na+ translocation across the membrane. Na+-NQR consists of six different subunits (NqrA-NqrF) and contains a [2Fe-2S] cluster, a noncovalently bound FAD, a noncovalently bound riboflavin, two covalently bound FMNs and potentially Q8 as cofactors. Initial crystallization of the entire Na+-NQR complex was achieved by the sitting-drop method using a nanolitre dispenser. Optimization of the crystallization conditions yielded flat yellow-coloured crystals with dimensions of up to 200×80×20 µm. The crystals diffracted to 4.0 Å resolution and belonged to space group P2(1), with unit-cell parameters a=94, b=146, c=105 Å, α=γ=90, β=111°.