Header

UZH-Logo

Maintenance Infos

Understanding cooperative protein adsorption events at the microscopic scale: a comparison between experimental data and Monte Carlo simulations


Rabe, M; Verdes, D; Seeger, S (2010). Understanding cooperative protein adsorption events at the microscopic scale: a comparison between experimental data and Monte Carlo simulations. Journal of Physical Chemistry. B, 114(17):5862-5869.

Abstract

Cooperative effects play a vital role in protein adsorption events on biological interfaces. Despite a number
of studies in this field molecular adsorption mechanisms that include cooperativity are still under debate. In
this work we use a Monte Carlo-type simulation to explore the microscopic details behind cooperative protein
adsorption. The simulation was designed to implement our previously proposed mechanism through which
proteins are not necessarily rejected if they approach the surface to an occupied region. Instead, we suggest
that proteins can be tracked laterally for a certain distance due to the influence of preadsorbed proteins in
order to reach the nearest available binding site. The simulation results were compared with experimental
data obtained by using the supercritical angle fluorescence (SAF) microscopy technique. It was found that
the tracking distance may be up to 2.5 times the protein’s diameter depending on the investigated system.
The general validity of this tracking mechanism is supported by a number of linear or upward concave
adsorption kinetics reported in the literature which are consistent with our simulation results. Furthermore,
the self-organization of proteins adsorbing under cooperative conditions on the surface is shown to necessarily
cause density inhomogeneities in the surface distribution of proteins which is also in agreement with
experimental observations.

Abstract

Cooperative effects play a vital role in protein adsorption events on biological interfaces. Despite a number
of studies in this field molecular adsorption mechanisms that include cooperativity are still under debate. In
this work we use a Monte Carlo-type simulation to explore the microscopic details behind cooperative protein
adsorption. The simulation was designed to implement our previously proposed mechanism through which
proteins are not necessarily rejected if they approach the surface to an occupied region. Instead, we suggest
that proteins can be tracked laterally for a certain distance due to the influence of preadsorbed proteins in
order to reach the nearest available binding site. The simulation results were compared with experimental
data obtained by using the supercritical angle fluorescence (SAF) microscopy technique. It was found that
the tracking distance may be up to 2.5 times the protein’s diameter depending on the investigated system.
The general validity of this tracking mechanism is supported by a number of linear or upward concave
adsorption kinetics reported in the literature which are consistent with our simulation results. Furthermore,
the self-organization of proteins adsorbing under cooperative conditions on the surface is shown to necessarily
cause density inhomogeneities in the surface distribution of proteins which is also in agreement with
experimental observations.

Statistics

Citations

Dimensions.ai Metrics
24 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > Physical and Theoretical Chemistry
Physical Sciences > Surfaces, Coatings and Films
Physical Sciences > Materials Chemistry
Language:English
Date:2010
Deposited On:16 Feb 2011 18:23
Last Modified:23 Jan 2022 18:07
Publisher:American Chemical Society
ISSN:1520-5207
OA Status:Closed
Publisher DOI:https://doi.org/10.1021/jp909601m
PubMed ID:20384354
Full text not available from this repository.