Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley

Vu, G T H; Wicker, T; Buchmann, J P; Chandler, P M; Matsumoto, T; Graner, A; Stein, N (2010). Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley. Functional & Integrative Genomics, 10(4):509-521.

Abstract

The barley mutant allele sdw3 confers a gibberellin-insensitive, semi-dwarf phenotype with potential for breeding of new semi-dwarfed barley cultivars. Towards map-based cloning, sdw3 was delimited by high-resolution genetic mapping to a 0.04 cM interval in a "cold spot" of recombination of the proximal region of the short arm of barley chromosome 2H. Extensive synteny between the barley Sdw3 locus (Hvusdw3) and the orthologous regions (Osasdw3, Sbisdw3, Bsysdw3) of three other grass species (Oryza sativa, Sorghum bicolor, Brachypodium sylvaticum) allowed for efficient synteny-based marker saturation in the target interval. Comparative sequence analysis revealed colinearity for 23 out of the 38, 35, and 29 genes identified in Brachypodium, rice, and Sorghum, respectively. Markers co-segregating with Hvusdw3 were generated from two of these genes. Initial attempts at chromosome walking in barley were performed with seven orthologous gene probes which were delimiting physical distances of 223, 123, and 127 kb in Brachypodium, rice, and Sorghum, respectively. Six non-overlapping small bacterial artificial chromosome (BAC) clone contigs (cumulative length of 670 kb) were obtained, which indicated a considerably larger physical size of Hvusdw3. Low-pass sequencing of selected BAC clones from these barley contigs exhibited a substantially lower gene frequency per physical distance and the presence of additional non-colinear genes. Four candidate genes for sdw3 were identified within barley BAC sequences that either co-segregated with the gene sdw3 or were located adjacent to these co-segregating genes. Identification of genic sequences in the sdw3 context provides tools for marker-assisted selection. Eventual identification of the actual gene will contribute new information for a basic understanding of the mechanisms underlying growth regulation in barley.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Life Sciences > Genetics
Language:English
Date:2010
Deposited On:30 Jan 2011 10:23
Last Modified:05 Nov 2024 02:38
Publisher:Springer
ISSN:1438-793X
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s10142-010-0173-4
PubMed ID:20464438

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Jan 2011
0 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications