Header

UZH-Logo

Maintenance Infos

Novel dominant-negative prion protein mutants identified from a randomized library


Ott, D; Taraborrelli, C; Aguzzi, A (2008). Novel dominant-negative prion protein mutants identified from a randomized library. Protein Engineering Design and Selection : PEDS, 21(10):623-629.

Abstract

Prion diseases are untreatable neurodegenerative disorders characterized by accumulation of PrP(Sc), an aggregated isoform of the cellular prion protein (PrP(C)). We generated a library of PrP variants with random mutations in the helix-3 domain and screened for dominant-negative mutants (DNMs) that would inhibit replication of prions (the Rocky Mountain Laboratory strain) in infected N2a cells. Two of the identified PrP mutants, Q167R and Q218K, were already known to counteract prion replication, thereby validating the effectiveness of this approach. In addition, novel DNMs were found efficiently to antagonize PrP(Sc) propagation in cells. In contrast to Q167R and Q218K, the newly identified DNMs S221P and Y217C resided on the cell surface at a substantially lower level, suggesting that robust cell surface display of DNM might not be a general prerequisite for efficient prion antagonism. The newly identified DNMs point to useful target-selective therapeutic tools for the treatment of prion diseases.

Abstract

Prion diseases are untreatable neurodegenerative disorders characterized by accumulation of PrP(Sc), an aggregated isoform of the cellular prion protein (PrP(C)). We generated a library of PrP variants with random mutations in the helix-3 domain and screened for dominant-negative mutants (DNMs) that would inhibit replication of prions (the Rocky Mountain Laboratory strain) in infected N2a cells. Two of the identified PrP mutants, Q167R and Q218K, were already known to counteract prion replication, thereby validating the effectiveness of this approach. In addition, novel DNMs were found efficiently to antagonize PrP(Sc) propagation in cells. In contrast to Q167R and Q218K, the newly identified DNMs S221P and Y217C resided on the cell surface at a substantially lower level, suggesting that robust cell surface display of DNM might not be a general prerequisite for efficient prion antagonism. The newly identified DNMs point to useful target-selective therapeutic tools for the treatment of prion diseases.

Statistics

Citations

Dimensions.ai Metrics
9 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

101 downloads since deposited on 05 Nov 2008
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Biotechnology
Physical Sciences > Bioengineering
Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Language:English
Date:21 October 2008
Deposited On:05 Nov 2008 16:02
Last Modified:24 Jun 2022 11:29
Publisher:Oxford University Press
ISSN:1741-0126
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1093/protein/gzn042
PubMed ID:18676974
  • Content: Accepted Version