Header

UZH-Logo

Maintenance Infos

Accuracy of continuous central venous oxygen saturation monitoring in patients undergoing cardiac surgery


Baulig, W; Dullenkopf, A; Kobler, A; Baulig, B; Roth, H R; Schmid, E R (2008). Accuracy of continuous central venous oxygen saturation monitoring in patients undergoing cardiac surgery. Journal of Clinical Monitoring and Computing, 22(3):183-188.

Abstract

OBJECTIVE: Continuous assessment of central venous oxygen saturation (S(cevox)O(2)) with the CeVOX device (Pulsion Medical Systems, Munich, Germany) was evaluated against central venous oxygen saturation (S(cv)O(2)) determined by co-oximetry. METHODS: In 20 cardiac surgical patients, a CeVOX fiberoptic probe was introduced into a standard central venous catheter placed in the right internal jugular vein and advanced 2-3 cm beyond the catheter tip. After in vivo calibration of the probe, S(cevox)O(2), S(cv)O(2), mixed venous oxygen saturation (S(mv)O(2)) haemoglobin (Hb), body temperature, heart rate, central venous and mean arterial pressure, and cardiac index were assessed simultaneously at 30 min intervals during surgery and at 60 min intervals during recovery in the intensive care unit. Agreement between S(cevox)O(2), and S(cv)O(2) was determined by Bland-Altman analysis. Simple regression analysis was used to assess the correlation of S(cevox)O(2), and S(cv)O(2) to Hb, body temperature and haemodynamic parameters. RESULTS: Values of S(cevox)O(2) and S(cv)O(2) (84 data pairs during surgery and 106 in the intensive care unit) ranged between 45-89% and 43-90%, respectively. Mean bias and limits of agreement of S(cevox)O(2) and S(cv)O(2) were -0.9 (-7.9/+6.1)% during surgery and -1.2 (-10.5/+8.1)% in the intensive care unit. In 37.9% of all measured data pairs, the difference between S(cevox)O(2) and S(cv)O(2) was beyond clinically acceptable limits (>/=1 s.d.). Mean bias was significantly influenced by cardiac index. Sensitivity and specificity of S(cevox)O(2) to detect substantial (>/=1 s.d.) changes in S(cv)O(2) were 89 and 82%, respectively. CONCLUSIONS: In adult patients during and after cardiac surgery, the current version of the CeVOX device might not be the tool to replace S(cv)O(2) determined by co-oxymetry, although sensitivity and specificity of S(cevox)O(2 )to predict substantial changes in S(cv)O(2) were acceptable.

Abstract

OBJECTIVE: Continuous assessment of central venous oxygen saturation (S(cevox)O(2)) with the CeVOX device (Pulsion Medical Systems, Munich, Germany) was evaluated against central venous oxygen saturation (S(cv)O(2)) determined by co-oximetry. METHODS: In 20 cardiac surgical patients, a CeVOX fiberoptic probe was introduced into a standard central venous catheter placed in the right internal jugular vein and advanced 2-3 cm beyond the catheter tip. After in vivo calibration of the probe, S(cevox)O(2), S(cv)O(2), mixed venous oxygen saturation (S(mv)O(2)) haemoglobin (Hb), body temperature, heart rate, central venous and mean arterial pressure, and cardiac index were assessed simultaneously at 30 min intervals during surgery and at 60 min intervals during recovery in the intensive care unit. Agreement between S(cevox)O(2), and S(cv)O(2) was determined by Bland-Altman analysis. Simple regression analysis was used to assess the correlation of S(cevox)O(2), and S(cv)O(2) to Hb, body temperature and haemodynamic parameters. RESULTS: Values of S(cevox)O(2) and S(cv)O(2) (84 data pairs during surgery and 106 in the intensive care unit) ranged between 45-89% and 43-90%, respectively. Mean bias and limits of agreement of S(cevox)O(2) and S(cv)O(2) were -0.9 (-7.9/+6.1)% during surgery and -1.2 (-10.5/+8.1)% in the intensive care unit. In 37.9% of all measured data pairs, the difference between S(cevox)O(2) and S(cv)O(2) was beyond clinically acceptable limits (>/=1 s.d.). Mean bias was significantly influenced by cardiac index. Sensitivity and specificity of S(cevox)O(2) to detect substantial (>/=1 s.d.) changes in S(cv)O(2) were 89 and 82%, respectively. CONCLUSIONS: In adult patients during and after cardiac surgery, the current version of the CeVOX device might not be the tool to replace S(cv)O(2) determined by co-oxymetry, although sensitivity and specificity of S(cevox)O(2 )to predict substantial changes in S(cv)O(2) were acceptable.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

320 downloads since deposited on 24 Oct 2008
54 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Anesthesiology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Health Informatics
Health Sciences > Critical Care and Intensive Care Medicine
Health Sciences > Anesthesiology and Pain Medicine
Language:English
Date:2008
Deposited On:24 Oct 2008 11:20
Last Modified:24 Jun 2022 11:35
Publisher:Springer
ISSN:1387-1307
Additional Information:The original publication is available at www.springerlink.com
OA Status:Green
Publisher DOI:https://doi.org/10.1007/s10877-008-9123-2
PubMed ID:18443743
  • Content: Accepted Version
  • Content: Published Version
  • Language: English
  • Description: Nationallizenz 142-005