Header

UZH-Logo

Maintenance Infos

Antiprion prophylaxis by gene transfer of a soluble prion antagonist


Genoud, N; Ott, D; Braun, N; Prinz, M; Schwarz, P; Suter, U; Trono, D; Aguzzi, A (2008). Antiprion prophylaxis by gene transfer of a soluble prion antagonist. American Journal of Pathology, 172(5):1287-1296.

Abstract

Prion diseases are untreatable neurodegenerative disorders characterized by accumulation of PrP(Sc), an aggregated isoform of the normal prion protein PrP(C). Here, we delivered the soluble prion antagonist PrP-Fc(2) to the brains of mice by lentiviral gene transfer. Although naïve mice developed scrapie at 175 +/- 5 days postintracerebral prion inoculation (dpi), gene transfer before inoculation delayed disease onset by 72 +/- 4 days. At 170 days postintracerebral prion inoculation, PrP(Sc) accumulation and prion infectivity in PrPFc-treated brains were reduced by 3.6 and 4.2 logs, respectively. When PrP-Fc(2) was delivered 30 days after prion inoculation, survival of the treated animals was extended by 25 days. We then used tissue-specific recombination to express PrP-Fc(2) in the entire central nervous system, in only astrocytes, or in only oligodendrocytes. Oligodendrocyte-restricted PrP-Fc(2) expression impaired PrP(Sc) deposition and delayed disease even though oligodendrocytes are completely resistant to prion infection, suggesting that PrP-Fc(2) affords protection via noncell autonomous mechanisms. These results suggest that somatic gene transfer of prion antagonists may be effective for postexposure prophylaxis of prion diseases.

Abstract

Prion diseases are untreatable neurodegenerative disorders characterized by accumulation of PrP(Sc), an aggregated isoform of the normal prion protein PrP(C). Here, we delivered the soluble prion antagonist PrP-Fc(2) to the brains of mice by lentiviral gene transfer. Although naïve mice developed scrapie at 175 +/- 5 days postintracerebral prion inoculation (dpi), gene transfer before inoculation delayed disease onset by 72 +/- 4 days. At 170 days postintracerebral prion inoculation, PrP(Sc) accumulation and prion infectivity in PrPFc-treated brains were reduced by 3.6 and 4.2 logs, respectively. When PrP-Fc(2) was delivered 30 days after prion inoculation, survival of the treated animals was extended by 25 days. We then used tissue-specific recombination to express PrP-Fc(2) in the entire central nervous system, in only astrocytes, or in only oligodendrocytes. Oligodendrocyte-restricted PrP-Fc(2) expression impaired PrP(Sc) deposition and delayed disease even though oligodendrocytes are completely resistant to prion infection, suggesting that PrP-Fc(2) affords protection via noncell autonomous mechanisms. These results suggest that somatic gene transfer of prion antagonists may be effective for postexposure prophylaxis of prion diseases.

Statistics

Citations

Dimensions.ai Metrics
11 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

109 downloads since deposited on 04 Nov 2008
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Pathology and Forensic Medicine
Language:English
Date:2008
Deposited On:04 Nov 2008 13:53
Last Modified:24 Jun 2022 11:36
Publisher:Elsevier
ISSN:0002-9440
OA Status:Green
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.2353/ajpath.2008.070836
PubMed ID:18372425