Header

UZH-Logo

Maintenance Infos

Microtubule organization in the final stages of cytokinesis as revealed by cryo-electron tomography


Elad, N; Abramovitch, S; Sabanay, H; Medalia, O (2011). Microtubule organization in the final stages of cytokinesis as revealed by cryo-electron tomography. Journal of Cell Science, 124(Pt 2):207-215.

Abstract

The completion of cytokinesis is dominated by the midbody, a tightly-packed microtubule (MT)-based bridge that transiently connects the two daughter cells. Assembled from condensed, spindle-MTs and numerous associated proteins, the midbody gradually narrows down until daughter cell partitioning occurs at this site. Although described many years ago, detailed understanding of the abscission process remains lacking. Applying cryo-electron tomography to purified midbodies, in combination with fluorescence microscopy, we present here new insight into MT organization within the midbody. We find that the midbody is spatially divided into a core bundle of MTs that traverses the electron-dense overlap region (continuous MTs), surrounded by MTs that terminate within the overlap region (polar MTs). Residual continuous MTs remained intact up to the verge of abscission, whereas the residual polar MTs lost their organization and retreated from the overlap region at late cytokinesis stages. A detailed localization of the microtubule-bundling protein PRC1 supports the above notion. Our study thus provides a detailed account of the abscission process and suggests that the midbody, having acquired a distinct MT architecture as compared to the preceding central spindle, actively facilitates the final stage of cytokinesis.

Abstract

The completion of cytokinesis is dominated by the midbody, a tightly-packed microtubule (MT)-based bridge that transiently connects the two daughter cells. Assembled from condensed, spindle-MTs and numerous associated proteins, the midbody gradually narrows down until daughter cell partitioning occurs at this site. Although described many years ago, detailed understanding of the abscission process remains lacking. Applying cryo-electron tomography to purified midbodies, in combination with fluorescence microscopy, we present here new insight into MT organization within the midbody. We find that the midbody is spatially divided into a core bundle of MTs that traverses the electron-dense overlap region (continuous MTs), surrounded by MTs that terminate within the overlap region (polar MTs). Residual continuous MTs remained intact up to the verge of abscission, whereas the residual polar MTs lost their organization and retreated from the overlap region at late cytokinesis stages. A detailed localization of the microtubule-bundling protein PRC1 supports the above notion. Our study thus provides a detailed account of the abscission process and suggests that the midbody, having acquired a distinct MT architecture as compared to the preceding central spindle, actively facilitates the final stage of cytokinesis.

Statistics

Citations

Dimensions.ai Metrics
32 citations in Web of Science®
33 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

90 downloads since deposited on 31 May 2011
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Cell Biology
Language:English
Date:2011
Deposited On:31 May 2011 14:47
Last Modified:28 Jun 2022 15:54
Publisher:Company of Biologists
ISSN:0021-9533
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1242/jcs.073486
PubMed ID:21187346
  • Content: Published Version