Header

UZH-Logo

Maintenance Infos

Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study


Holper, L; Scholkmann, F; Shalóm, D E; Wolf, M (2012). Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study. Cortex, 48(5):593-603.

Abstract

Motor imagery (MI) is widely used to study cognitive action control. Although, the neural simulation theory assumes that MI and motor execution (ME) share many common features, the extent of similarity and whether it spreads into the preparation phase is still under investigation. Here we asked, whether an extension of physiological mental preparation has a comparable effect on MI and ME. Data were recorded using wireless functional near-infrared spectroscopy (fNIRS) in a two-stage task design where subjects were cued with or without preparatory stimuli to either execute or imagine complex sequential thumb-finger tasks. The main finding is that the extended mental preparation has a significant positive effect on oxy-hemoglobin (∆[O(2)Hb]) in response to MI, which is proportionally larger as that found in response to ME. Furthermore, fNIRS was capable to discriminate within each task whether it was preceded by preparatory stimuli or not. Transition from mental preparation to actual performance (ME or MI) was reflected by a dip of the fNIRS signal presumably related to underlying cortical processes changing between preparation and task performance. Statistically significant main effects of 'Preparation' and 'Task' showed that ∆[O(2)Hb] during preparation was preparation-specific, i.e., positively affected by the presence of preparatory stimuli, whereas during task performance ∆[O(2)Hb] was both preparation- and task-specific, i.e., additionally affected by the task mode. These results are particularly appealing from a practical point of view for making use of MI in neuroscientific applications. Especially neurorehabilitation and neural interfaces may benefit from utilizing positive interactions between mental preparation and MI performance.

Abstract

Motor imagery (MI) is widely used to study cognitive action control. Although, the neural simulation theory assumes that MI and motor execution (ME) share many common features, the extent of similarity and whether it spreads into the preparation phase is still under investigation. Here we asked, whether an extension of physiological mental preparation has a comparable effect on MI and ME. Data were recorded using wireless functional near-infrared spectroscopy (fNIRS) in a two-stage task design where subjects were cued with or without preparatory stimuli to either execute or imagine complex sequential thumb-finger tasks. The main finding is that the extended mental preparation has a significant positive effect on oxy-hemoglobin (∆[O(2)Hb]) in response to MI, which is proportionally larger as that found in response to ME. Furthermore, fNIRS was capable to discriminate within each task whether it was preceded by preparatory stimuli or not. Transition from mental preparation to actual performance (ME or MI) was reflected by a dip of the fNIRS signal presumably related to underlying cortical processes changing between preparation and task performance. Statistically significant main effects of 'Preparation' and 'Task' showed that ∆[O(2)Hb] during preparation was preparation-specific, i.e., positively affected by the presence of preparatory stimuli, whereas during task performance ∆[O(2)Hb] was both preparation- and task-specific, i.e., additionally affected by the task mode. These results are particularly appealing from a practical point of view for making use of MI in neuroscientific applications. Especially neurorehabilitation and neural interfaces may benefit from utilizing positive interactions between mental preparation and MI performance.

Statistics

Citations

Dimensions.ai Metrics
19 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

282 downloads since deposited on 08 Aug 2011
25 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Social Sciences & Humanities > Neuropsychology and Physiological Psychology
Social Sciences & Humanities > Experimental and Cognitive Psychology
Life Sciences > Cognitive Neuroscience
Language:English
Date:2012
Deposited On:08 Aug 2011 08:32
Last Modified:01 Jul 2022 12:54
Publisher:Elsevier
ISSN:0010-9452
OA Status:Green
Publisher DOI:https://doi.org/10.1016/j.cortex.2011.02.001
PubMed ID:21377666