Navigation auf zora.uzh.ch

Search

ZORA (Zurich Open Repository and Archive)

Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach

Hoefling, M; Lima, N; Haenni, D; Seidel, C A M; Schuler, B; Grubmüller, H (2011). Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach. PLoS ONE, 6(5):e19791.

Abstract

Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Health Sciences > Multidisciplinary
Language:English
Date:2011
Deposited On:24 Aug 2011 15:04
Last Modified:06 Sep 2024 01:35
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0019791
PubMed ID:21629703
Download PDF  'Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach'.
Preview
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
94 citations in Web of Science®
97 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

176 downloads since deposited on 24 Aug 2011
2 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications