Abstract
In the present study the smear layer dissolution kinetics of 18% etidronate (HEBP), 9% HEBP, and 17% ethylenediaminetetraacetic acid (EDTA) on human dentin were quantitatively and longitudinally analyzed by using a single-tooth comparative model. Coronal dentin disks were prepared from 3 maxillary human molars. A standardized smear layer was produced on the pulpal side of each disk. The smear layer-covered surface was divided into 3 similar areas. Each of these was then exposed to 1 of the 3 irrigants under investigation, whereas the others were covered with adhesive tape. Co-site image sequences of the areas under investigation were obtained after several cumulative demineralization times. Sixteen images were obtained from each dentin area of each tooth for each experimental time at 1000x magnification. An image processing and analysis sequence measured sets of images, providing data of area fraction for thousands of tubules over time and allowing us to quantitatively follow the effect of the chelating substances. The Kruskal-Wallis H test and Dunn multiple comparison test were used to analyze the data. Overall, it can be concluded that the demineralization kinetics promoted by both 9% HEBP and 18% HEBP were significantly slower than those of 17% EDTA (P < .05). In addition, the single-tooth model is advantageous over the first co-site optical microscopy dentin assessments when different chelator solutions are compared.