Header

UZH-Logo

Maintenance Infos

The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: dependence on the basolateral amygdala


Roozendaal, B; Griffith, Q K; Buranday, J; de Quervain, D J F; McGaugh, J L (2003). The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: dependence on the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 100(3):1328-1333.

Abstract

Previous studies have indicated that stress-activated glucocorticoid hormones induce temporary memory retrieval impairment. The present study examined whether adrenal steroid receptors in the hippocampus mediate such glucocorticoid effects on spatial memory retrieval. The specific glucocorticoid receptor (GR) agonist 11beta, 17beta-dihydroxy-6,21-dimethyl-17alpha-pregna-4,6-trien-20yn-3-one (RU 28362; 5 or 15 ng) infused into the hippocampus of male Sprague-Dawley rats 60 min before water-maze retention testing, 24 h after training, dose-dependently impaired probe-trial retention performance, as assessed both by time spent in the training quadrant and initial latency to cross the platform location. The GR agonist did not affect circulating corticosterone levels immediately after the probe trial, indicating that RU 28362 infusions did not influence retention by altering glucocorticoid feedback mechanisms. As infusions of the GR agonist into the hippocampus 60 min before training did not influence water-maze acquisition or immediate recall, the findings indicated that the GR agonist-induced retention impairment was induced selectively by an influence on information retrieval. In contrast, pretest infusions of the GR agonist administered into the basolateral complex of the amygdala (BLA; 2 or 6 ng) did not alter retention performance in the water maze. However, N-methyl-d-aspartate-induced lesions of the BLA, made 1 week before training, blocked the memory retrieval impairment induced by intrahippocampal infusions of RU 28362 given 60 min before the retention test. These findings indicate that the effects of glucocorticoids on retrieval of long-term spatial memory depend on the hippocampus and, additionally, that neuronal input from the BLA is critical in enabling hippocampal glucocorticoid effects on memory retrieval.

Abstract

Previous studies have indicated that stress-activated glucocorticoid hormones induce temporary memory retrieval impairment. The present study examined whether adrenal steroid receptors in the hippocampus mediate such glucocorticoid effects on spatial memory retrieval. The specific glucocorticoid receptor (GR) agonist 11beta, 17beta-dihydroxy-6,21-dimethyl-17alpha-pregna-4,6-trien-20yn-3-one (RU 28362; 5 or 15 ng) infused into the hippocampus of male Sprague-Dawley rats 60 min before water-maze retention testing, 24 h after training, dose-dependently impaired probe-trial retention performance, as assessed both by time spent in the training quadrant and initial latency to cross the platform location. The GR agonist did not affect circulating corticosterone levels immediately after the probe trial, indicating that RU 28362 infusions did not influence retention by altering glucocorticoid feedback mechanisms. As infusions of the GR agonist into the hippocampus 60 min before training did not influence water-maze acquisition or immediate recall, the findings indicated that the GR agonist-induced retention impairment was induced selectively by an influence on information retrieval. In contrast, pretest infusions of the GR agonist administered into the basolateral complex of the amygdala (BLA; 2 or 6 ng) did not alter retention performance in the water maze. However, N-methyl-d-aspartate-induced lesions of the BLA, made 1 week before training, blocked the memory retrieval impairment induced by intrahippocampal infusions of RU 28362 given 60 min before the retention test. These findings indicate that the effects of glucocorticoids on retrieval of long-term spatial memory depend on the hippocampus and, additionally, that neuronal input from the BLA is critical in enabling hippocampal glucocorticoid effects on memory retrieval.

Statistics

Citations

Dimensions.ai Metrics
221 citations in Web of Science®
252 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:2003
Deposited On:08 Sep 2011 09:02
Last Modified:06 Nov 2023 02:38
Publisher:National Academy of Sciences
ISSN:0027-8424
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.0337480100
PubMed ID:12538851
Full text not available from this repository.