Header

UZH-Logo

Maintenance Infos

Regulation of GABA transporter mRNA and protein after photothrombotic infarct in rat brain


Frahm, C; Haupt, C; Weinandy, F; Siegel, G; Bruehl, C; Witte, O W (2004). Regulation of GABA transporter mRNA and protein after photothrombotic infarct in rat brain. Journal of Comparative Neurology, 478(2):176-188.

Abstract

Animal models of focal ischemic infarcts reveal an impaired GABAergic (gamma-aminobutyric acid) neurotransmission. GABA, the main inhibitory neurotransmitter, is primarily taken up by specific sodium-dependent transporters. As these transporters play a crucial role in maintaining levels of GABA concentration, they may be functionally involved in ischemic processes. We investigated whether the mRNA and protein expression of GAT-1, the dominant neuronal GABA transporter, is altered after cortical infarct induced by photothrombosis in Wistar rats. In situ hybridization was performed to analyze GAT-1 mRNA-positive cells in cortical brain regions and the hippocampus. The lesion dramatically raised the number of GABA transporter mRNA-expressing cells in all investigated cortical regions. Double-labeling studies with a general neuronal marker and a marker for astrocytes revealed that cells expressing GAT-1 mRNA after photothrombosis are neurons. The mRNA expression pattern of all hippocampal subfields remained unchanged. In contrast, cortical GAT-1 protein density was only slightly affected and surprisingly in the opposite way. In the primary and secondary somatosensory cortex, density values were significantly reduced. Immunoreactivity was not altered in all investigated hippocampal areas. We found a marked discordance between the increased number of cells expressing GAT-1 mRNA in the cortex and the reduced tissue GAT-1 protein content. Focal brain ischemia obviously triggers mechanisms that interfere with GAT-1 transcriptional regulation and protein synthesis or turnover.

Abstract

Animal models of focal ischemic infarcts reveal an impaired GABAergic (gamma-aminobutyric acid) neurotransmission. GABA, the main inhibitory neurotransmitter, is primarily taken up by specific sodium-dependent transporters. As these transporters play a crucial role in maintaining levels of GABA concentration, they may be functionally involved in ischemic processes. We investigated whether the mRNA and protein expression of GAT-1, the dominant neuronal GABA transporter, is altered after cortical infarct induced by photothrombosis in Wistar rats. In situ hybridization was performed to analyze GAT-1 mRNA-positive cells in cortical brain regions and the hippocampus. The lesion dramatically raised the number of GABA transporter mRNA-expressing cells in all investigated cortical regions. Double-labeling studies with a general neuronal marker and a marker for astrocytes revealed that cells expressing GAT-1 mRNA after photothrombosis are neurons. The mRNA expression pattern of all hippocampal subfields remained unchanged. In contrast, cortical GAT-1 protein density was only slightly affected and surprisingly in the opposite way. In the primary and secondary somatosensory cortex, density values were significantly reduced. Immunoreactivity was not altered in all investigated hippocampal areas. We found a marked discordance between the increased number of cells expressing GAT-1 mRNA in the cortex and the reduced tissue GAT-1 protein content. Focal brain ischemia obviously triggers mechanisms that interfere with GAT-1 transcriptional regulation and protein synthesis or turnover.

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > General Neuroscience
Uncontrolled Keywords:General Neuroscience
Language:English
Date:2004
Deposited On:24 Oct 2011 14:56
Last Modified:23 Jan 2022 19:20
Publisher:Wiley-Blackwell
ISSN:0021-9967
Funders:Bundesministerium für Bildung und Forschung. Grant Numbers: 01GZ0306, 0311578, 01GI9905
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/cne.20282
PubMed ID:15349978
Full text not available from this repository.