Header

UZH-Logo

Maintenance Infos

Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network


Kalisch, R; Korenfeld, E; Stephan, K E; Weiskopf, N; Seymour, B; Dolan, R J (2006). Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. Journal of Neuroscience, 26(37):9503-9511.

Abstract

In fear extinction, an animal learns that a conditioned stimulus (CS) no longer predicts a noxious stimulus [unconditioned stimulus (UCS)] to which it had previously been associated, leading to inhibition of the conditioned response (CR). Extinction creates a new CS-noUCS memory trace, competing with the initial fear (CS-UCS) memory. Recall of extinction memory and, hence, CR inhibition at later CS encounters is facilitated by contextual stimuli present during extinction training. In line with theoretical predictions derived from animal studies, we show that, after extinction, a CS-evoked engagement of human ventromedial prefrontal cortex (VMPFC) and hippocampus is context dependent, being expressed in an extinction, but not a conditioning, context. Likewise, a positive correlation between VMPFC and hippocampal activity is extinction context dependent. Thus, a VMPFC-hippocampal network provides for context-dependent recall of human extinction memory, consistent with a view that hippocampus confers context dependence on VMPFC.

Abstract

In fear extinction, an animal learns that a conditioned stimulus (CS) no longer predicts a noxious stimulus [unconditioned stimulus (UCS)] to which it had previously been associated, leading to inhibition of the conditioned response (CR). Extinction creates a new CS-noUCS memory trace, competing with the initial fear (CS-UCS) memory. Recall of extinction memory and, hence, CR inhibition at later CS encounters is facilitated by contextual stimuli present during extinction training. In line with theoretical predictions derived from animal studies, we show that, after extinction, a CS-evoked engagement of human ventromedial prefrontal cortex (VMPFC) and hippocampus is context dependent, being expressed in an extinction, but not a conditioning, context. Likewise, a positive correlation between VMPFC and hippocampal activity is extinction context dependent. Thus, a VMPFC-hippocampal network provides for context-dependent recall of human extinction memory, consistent with a view that hippocampus confers context dependence on VMPFC.

Statistics

Citations

Dimensions.ai Metrics
359 citations in Web of Science®
373 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

94 downloads since deposited on 31 Oct 2011
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
08 Research Priority Programs > Foundations of Human Social Behavior: Altruism and Egoism
Dewey Decimal Classification:170 Ethics
330 Economics
Scopus Subject Areas:Life Sciences > General Neuroscience
Language:English
Date:2006
Deposited On:31 Oct 2011 11:38
Last Modified:21 Jan 2022 14:29
Publisher:Society for Neuroscience
ISSN:0270-6474
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.2021-06.2006
PubMed ID:16971534
  • Content: Published Version