Abstract
We calculate the energetics of vacancies in CuInSe(2) using a hybrid functional (HSE06, HSE standing for Heyd, Scuseria and Ernzerhof), which gives a better description of the band gap compared to (semi)local exchange-correlation functionals. We show that, contrary to present beliefs, copper and indium vacancies induce no defect levels within the band gap and therefore cannot account for any experimentally observed levels. The selenium vacancy is responsible for only one level, namely, a deep acceptor level is an element of(0/2-). We find strong preference for V(Cu) and V(Se) over V(In) under practically all chemical conditions.