Header

UZH-Logo

Maintenance Infos

Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence


Zaehle, T; Beretta, M; Jäncke, Lutz; Herrmann, C S; Sandmann, P (2011). Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Experimental Brain Research, 215(2):135-140.

Abstract

Transcranial direct current stimulation (tDCS) can systematically modify behavior by inducing changes in the underlying brain function. Objective electrophysiological evidence for tDCS-induced excitability changes has been demonstrated for the visual and somatosensory cortex, while evidence for excitability changes in the auditory cortex is lacking. In the present study, we applied tDCS over the left temporal as well as the left temporo-parietal cortex and investigated tDCS-induced effects on auditory evoked potentials after anodal, cathodal, and sham stimulation. Results show that anodal and cathodal tDCS can modify auditory cortex reactivity. Moreover, auditory evoked potentials were differentially modulated as a function of site of stimulation. While anodal tDCS over the temporal cortex increased auditory P50 amplitudes, cathodal tDCS over the temporo-parietal cortex induced larger N1 amplitudes. The results directly demonstrate excitability changes in the auditory cortex induced by active tDCS over the temporal and temporo-parietal cortex and might contribute to the understanding of mechanisms involved in the successful treatment of auditory disorders like tinnitus via tDCS.

Abstract

Transcranial direct current stimulation (tDCS) can systematically modify behavior by inducing changes in the underlying brain function. Objective electrophysiological evidence for tDCS-induced excitability changes has been demonstrated for the visual and somatosensory cortex, while evidence for excitability changes in the auditory cortex is lacking. In the present study, we applied tDCS over the left temporal as well as the left temporo-parietal cortex and investigated tDCS-induced effects on auditory evoked potentials after anodal, cathodal, and sham stimulation. Results show that anodal and cathodal tDCS can modify auditory cortex reactivity. Moreover, auditory evoked potentials were differentially modulated as a function of site of stimulation. While anodal tDCS over the temporal cortex increased auditory P50 amplitudes, cathodal tDCS over the temporo-parietal cortex induced larger N1 amplitudes. The results directly demonstrate excitability changes in the auditory cortex induced by active tDCS over the temporal and temporo-parietal cortex and might contribute to the understanding of mechanisms involved in the successful treatment of auditory disorders like tinnitus via tDCS.

Statistics

Citations

Dimensions.ai Metrics
65 citations in Web of Science®
75 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Scopus Subject Areas:Life Sciences > General Neuroscience
Language:English
Date:2011
Deposited On:29 Nov 2011 09:18
Last Modified:23 Jan 2022 19:40
Publisher:Springer
ISSN:0014-4819
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s00221-011-2879-5
PubMed ID:21964868
Full text not available from this repository.