Header

UZH-Logo

Maintenance Infos

Differential control of yolk protein gene expression in fat bodies and gonads by the sex-determining gene tra-2 of Drosophila.


Bownes, M; Steinmann-Zwicky, M; Nöthiger, R (1990). Differential control of yolk protein gene expression in fat bodies and gonads by the sex-determining gene tra-2 of Drosophila. The EMBO Journal, 9(12):3975-3980.

Abstract

We studied the regulation of the yolk protein (YP) genes in the somatic cells of the gonads, using temperature sensitive mutations (tra-2ts) of transformer-2, a gene required for female sexual differentiation. XX;tra-2ts mutant animals were raised at the permissive temperature so that they developed as females and were then shifted to the restrictive male-determining temperature either 1-2 days before or 0-2 h after eclosion. These animals formed vitellogenic ovaries. Likewise, mutant gonads transplanted into either normal female hosts or normal male hosts, kept at the restrictive temperature, underwent vitellogenesis. Thus, the ovarian follicle cells can mature and express their YP genes in the absence of a functional product of the tra-2 gene. Although the gonadal somatic cells of ovary and testis may derive from the same progenitor cells, the testicular cells of XX;tra-2ts pseudomales did not express their YP genes nor take up YP from the haemolymph at the permissive female-determining temperature. We conclude that in the somatic cells of the gonad, the YP genes are no longer under direct control of the sex-determining genes, but instead are regulated by tissue specific factors present in the follicle cells. It is the formation of follicle cells which requires the activity of tra-2.

Abstract

We studied the regulation of the yolk protein (YP) genes in the somatic cells of the gonads, using temperature sensitive mutations (tra-2ts) of transformer-2, a gene required for female sexual differentiation. XX;tra-2ts mutant animals were raised at the permissive temperature so that they developed as females and were then shifted to the restrictive male-determining temperature either 1-2 days before or 0-2 h after eclosion. These animals formed vitellogenic ovaries. Likewise, mutant gonads transplanted into either normal female hosts or normal male hosts, kept at the restrictive temperature, underwent vitellogenesis. Thus, the ovarian follicle cells can mature and express their YP genes in the absence of a functional product of the tra-2 gene. Although the gonadal somatic cells of ovary and testis may derive from the same progenitor cells, the testicular cells of XX;tra-2ts pseudomales did not express their YP genes nor take up YP from the haemolymph at the permissive female-determining temperature. We conclude that in the somatic cells of the gonad, the YP genes are no longer under direct control of the sex-determining genes, but instead are regulated by tissue specific factors present in the follicle cells. It is the formation of follicle cells which requires the activity of tra-2.

Statistics

Citations

Dimensions.ai Metrics
20 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

168 downloads since deposited on 11 Feb 2008
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > General Neuroscience
Life Sciences > Molecular Biology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Immunology and Microbiology
Language:English
Date:1 December 1990
Deposited On:11 Feb 2008 12:15
Last Modified:01 Dec 2023 02:38
Publisher:European Molecular Biology Organization ; Nature Publishing Group
ISSN:0261-4189
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/j.1460-2075.1990.tb07618.x
Related URLs:http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=1701141
PubMed ID:1701141