Abstract
Recent advances in the econometric modelling of count data have often been based on the generalized method of moments (GMM). However, the two-step GMM procedure may perform poorly in small samples, and several empirical likelihood-based estimators have been suggested alternatively. In this paper I discuss empirical likelihood (EL) estimation for count data models with endogenous regressors. I carefully distinguish between parametric and semi-parametric methods and analyze the properties of the EL estimator by means of a Monte Carlo experiment. I apply the proposed method to estimate the effect of women’s schooling on fertility.