Header

UZH-Logo

Maintenance Infos

Suitability of pesticide risk indicators for Less Developed Countries: a comparison


Feola, G; Rahn, E; Binder, C R (2011). Suitability of pesticide risk indicators for Less Developed Countries: a comparison. Agriculture, Ecosystems & Environment, 142(3-4):238-245.

Abstract

Pesticide risk indicators provide simple support in the assessment of environmental and health risks from pesticide use, and can therefore inform policies to foster a sustainable interaction of agriculture with the environment. For their relative simplicity, indicators may be particularly useful under conditions of limited data availability and resources, such as in Less Developed Countries (LDCs). However, indicator complexity can vary significantly, in particular between those that rely on an exposure–toxicity ratio (ETR) and those that do not. In addition, pesticide risk indicators are usually developed for Western contexts, which might cause incorrect estimation in LDCs. This study investigated the appropriateness of seven pesticide risk indicators for use in LDCs, with reference to smallholding agriculture in Colombia. Seven farm-level indicators, among which 3 relied on an ETR (POCER, EPRIP, PIRI) and 4 on a non-ETR approach (EIQ, PestScreen, OHRI, Dosemeci et al., 2002), were calculated and then compared by means of the Spearman rank correlation test. Indicators were also compared with respect to key indicator char- acteristics, i.e. user friendliness and ability to represent the system under study. The comparison of the indicators in terms of the total environmental risk suggests that the indicators not relying on an ETR approach cannot be used as a reliable proxy for more complex, i.e. ETR, indicators. ETR indicators, when user-friendly, show a comparative advantage over non-ETR in best combining the need for a relatively simple tool to be used in contexts of limited data availability and resources, and for a reliable estimation of environmental risk. Non-ETR indicators remain useful and accessible tools to discriminate between different pesticides prior to application. Concerning the human health risk, simple algorithms seem more appropriate for assessing human health risk in LDCs. However, further research on health risk indicators and their validation under LDC conditions is needed.

Abstract

Pesticide risk indicators provide simple support in the assessment of environmental and health risks from pesticide use, and can therefore inform policies to foster a sustainable interaction of agriculture with the environment. For their relative simplicity, indicators may be particularly useful under conditions of limited data availability and resources, such as in Less Developed Countries (LDCs). However, indicator complexity can vary significantly, in particular between those that rely on an exposure–toxicity ratio (ETR) and those that do not. In addition, pesticide risk indicators are usually developed for Western contexts, which might cause incorrect estimation in LDCs. This study investigated the appropriateness of seven pesticide risk indicators for use in LDCs, with reference to smallholding agriculture in Colombia. Seven farm-level indicators, among which 3 relied on an ETR (POCER, EPRIP, PIRI) and 4 on a non-ETR approach (EIQ, PestScreen, OHRI, Dosemeci et al., 2002), were calculated and then compared by means of the Spearman rank correlation test. Indicators were also compared with respect to key indicator char- acteristics, i.e. user friendliness and ability to represent the system under study. The comparison of the indicators in terms of the total environmental risk suggests that the indicators not relying on an ETR approach cannot be used as a reliable proxy for more complex, i.e. ETR, indicators. ETR indicators, when user-friendly, show a comparative advantage over non-ETR in best combining the need for a relatively simple tool to be used in contexts of limited data availability and resources, and for a reliable estimation of environmental risk. Non-ETR indicators remain useful and accessible tools to discriminate between different pesticides prior to application. Concerning the human health risk, simple algorithms seem more appropriate for assessing human health risk in LDCs. However, further research on health risk indicators and their validation under LDC conditions is needed.

Statistics

Citations

Dimensions.ai Metrics
30 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

139 downloads since deposited on 06 Dec 2011
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Ecology
Life Sciences > Animal Science and Zoology
Life Sciences > Agronomy and Crop Science
Language:English
Date:2011
Deposited On:06 Dec 2011 13:43
Last Modified:23 Jan 2022 19:45
Publisher:Elsevier
ISSN:0167-8809
OA Status:Green
Publisher DOI:https://doi.org/10.1016/j.agee.2011.05.014