Header

UZH-Logo

Maintenance Infos

DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts


Karouzakis, E; Rengel, Y; Jüngel, A; Kolling, C; Gay, R E; Michel, B A; Tak, P P; Gay, S; Neidhart, M; Ospelt, C (2011). DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes and Immunity, 12(8):643-652.

Abstract

In the search for specific genes regulated by DNA methylation in rheumatoid arthritis (RA), we investigated the expression of CXCL12 in synovial fibroblasts (SFs) and the methylation status of its promoter and determined its contribution to the expression of matrix metalloproteinases (MMPs). DNA was isolated from SFs and methylation was analyzed by bisulfite sequencing and McrBC assay. CXCL12 protein was quantified by enzyme-linked immunosorbent assay before and after treatment with 5-azacytidine. RASFs were transfected with CXCR7-siRNA and stimulated with CXCL12. Expression of MMPs was analyzed by real-time PCR. Basal expression of CXCL12 was higher in RASFs than osteoarthritis (OA) SFs. 5-azacytidine demethylation increased the expression of CXCL12 and reduced the methylation of CpG nucleotides. A lower percentage of CpG methylation was found in the CXCL12 promoter of RASFs compared with OASFs. Overall, we observed a significant correlation in the mRNA expression and the CXCL12 promoter DNA methylation. Stimulation of RASFs with CXCL12 increased the expression of MMPs. CXCR7 but not CXCR4 was expressed and functional in SFs. We show here that RASFs produce more CXCL12 than OASFs due to promoter methylation changes and that stimulation with CXCL12 activates MMPs via CXCR7 in SFs. Thereby we describe an endogenously activated pathway in RASFs, which promotes joint destruction.

Abstract

In the search for specific genes regulated by DNA methylation in rheumatoid arthritis (RA), we investigated the expression of CXCL12 in synovial fibroblasts (SFs) and the methylation status of its promoter and determined its contribution to the expression of matrix metalloproteinases (MMPs). DNA was isolated from SFs and methylation was analyzed by bisulfite sequencing and McrBC assay. CXCL12 protein was quantified by enzyme-linked immunosorbent assay before and after treatment with 5-azacytidine. RASFs were transfected with CXCR7-siRNA and stimulated with CXCL12. Expression of MMPs was analyzed by real-time PCR. Basal expression of CXCL12 was higher in RASFs than osteoarthritis (OA) SFs. 5-azacytidine demethylation increased the expression of CXCL12 and reduced the methylation of CpG nucleotides. A lower percentage of CpG methylation was found in the CXCL12 promoter of RASFs compared with OASFs. Overall, we observed a significant correlation in the mRNA expression and the CXCL12 promoter DNA methylation. Stimulation of RASFs with CXCL12 increased the expression of MMPs. CXCR7 but not CXCR4 was expressed and functional in SFs. We show here that RASFs produce more CXCL12 than OASFs due to promoter methylation changes and that stimulation with CXCL12 activates MMPs via CXCR7 in SFs. Thereby we describe an endogenously activated pathway in RASFs, which promotes joint destruction.

Statistics

Citations

Dimensions.ai Metrics
63 citations in Web of Science®
72 citations in Scopus®
95 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

468 downloads since deposited on 06 Jan 2012
92 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:06 Jan 2012 14:17
Last Modified:20 Sep 2018 07:01
Publisher:Nature Publishing Group
ISSN:1466-4879
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1038/gene.2011.45
PubMed ID:21753787
Project Information:
  • : FunderFP7
  • : Grant ID223404
  • : Project TitleMASTERSWITCH - Mechanisms to Attack Steering Effectors of Rheumatoid Syndromes with Innovated Therapy Choices

Download

Download PDF  'DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 443kB
View at publisher