Header

UZH-Logo

Maintenance Infos

Testing the warm dark matter paradigm with large-scale structures


Smith, R E; Markovic, K (2011). Testing the warm dark matter paradigm with large-scale structures. Physical Review D, 84(6):063507.

Abstract

We explore the impact of a ΛWDM cosmological scenario on the clustering properties large-scale structure in the Universe. We do this by extending the halo model. The new development is that we consider two components to the mass density: one arising from mass in collapsed haloes, and the second from a smooth component of uncollapsed mass. Assuming that the nonlinear clustering of dark matter haloes can be understood, then from conservation arguments one can precisely calculate the clustering properties of the smooth component and its cross correlation with haloes. We then explore how the three main ingredients of the halo calculations, the halo mass function, bias and density profiles are affected by warm dark matter (WDM). We show that, relative to cold dark matter (CDM), the halo mass function is suppressed by 50%, for masses ˜100 times the free-streaming mass scale Mfs. Consequently, the bias of low mass haloes can be boosted by as much as ˜20% for 0.25 keV WDM particles. Core densities of haloes will also be suppressed relative to the CDM case. We also examine the impact of relic thermal velocities on the density profiles, and find that these effects are constrained to scales r<1h-1kpc, and hence of little importance for dark matter tests, owing to uncertainties in the baryonic physics. We use our modified halo model to calculate the nonlinear matter power spectrum, and find that there is significant small-scale power in the model. However, relative to the CDM case the power is suppressed. The amount of suppression depends on the mass of the WDM particle, but can be of order 10% at k˜1hMpc-1 for particles of mass 0.25 keV. We then calculate the expected signal and noise that our set of ΛWDM models would give for a future weak lensing mission. We show that the models should in principle be separable at high significance. Finally, using the Fisher matrix formalism we forecast the limit on the WDM particle mass for a future full-sky weak lensing mission like Euclid or the Large Synoptic Survey Telescope. With Planck priors and using only multipoles l<5000, we find that a lower limit of 2.6 keV should be easily achievable.

Abstract

We explore the impact of a ΛWDM cosmological scenario on the clustering properties large-scale structure in the Universe. We do this by extending the halo model. The new development is that we consider two components to the mass density: one arising from mass in collapsed haloes, and the second from a smooth component of uncollapsed mass. Assuming that the nonlinear clustering of dark matter haloes can be understood, then from conservation arguments one can precisely calculate the clustering properties of the smooth component and its cross correlation with haloes. We then explore how the three main ingredients of the halo calculations, the halo mass function, bias and density profiles are affected by warm dark matter (WDM). We show that, relative to cold dark matter (CDM), the halo mass function is suppressed by 50%, for masses ˜100 times the free-streaming mass scale Mfs. Consequently, the bias of low mass haloes can be boosted by as much as ˜20% for 0.25 keV WDM particles. Core densities of haloes will also be suppressed relative to the CDM case. We also examine the impact of relic thermal velocities on the density profiles, and find that these effects are constrained to scales r<1h-1kpc, and hence of little importance for dark matter tests, owing to uncertainties in the baryonic physics. We use our modified halo model to calculate the nonlinear matter power spectrum, and find that there is significant small-scale power in the model. However, relative to the CDM case the power is suppressed. The amount of suppression depends on the mass of the WDM particle, but can be of order 10% at k˜1hMpc-1 for particles of mass 0.25 keV. We then calculate the expected signal and noise that our set of ΛWDM models would give for a future weak lensing mission. We show that the models should in principle be separable at high significance. Finally, using the Fisher matrix formalism we forecast the limit on the WDM particle mass for a future full-sky weak lensing mission like Euclid or the Large Synoptic Survey Telescope. With Planck priors and using only multipoles l<5000, we find that a lower limit of 2.6 keV should be easily achievable.

Statistics

Citations

Dimensions.ai Metrics
85 citations in Web of Science®
87 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

122 downloads since deposited on 19 Feb 2012
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Nuclear and High Energy Physics
Physical Sciences > Physics and Astronomy (miscellaneous)
Language:English
Date:September 2011
Deposited On:19 Feb 2012 10:07
Last Modified:23 Jan 2022 20:11
Publisher:American Physical Society
ISSN:1550-7998 (P) 1089-4918 (E)
OA Status:Green
Publisher DOI:https://doi.org/10.1103/PhysRevD.84.063507
Related URLs:http://arxiv.org/abs/1103.2134
  • Content: Accepted Version
  • Description: Version 2
  • Content: Accepted Version
  • Description: Version 1